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Abstract

From artificial voices in GPS to automatic systems of dictation, from voice-based identity verification
to voice pathology detection, speech processing applications are nowadays omnipresent in our daily
life. By offering solutions to companies seeking for efficiency enhancement with simultaneous cost
saving, the market of speech technology is forecast to be particularly promising in the next years.

The present thesis deals with advances in glottal analysis in order to incorporate new tech-
niques within speech processing applications. While current systems are usually based on information
related to the vocal tract configuration, the airflow passing through the vocal folds, and called glottal
flow, is expected to exhibit a relevant complementarity. Unfortunately, glottal analysis from speech
recordings requires specific complex processing operations, which explains why it has been generally
avoided.

The main goal of this thesis is to provide new advances in glottal analysis so as to popularize
it in speech processing. First, new techniques for glottal excitation estimation and modeling are
proposed and shown to outperform other state-of-the-art approaches on large corpora of real speech.
Moreover, proposed methods are integrated within various speech processing applications: speech
synthesis, voice pathology detection, speaker recognition and expressive speech analysis. They are
shown to lead to a substantial improvement when compared to other existing techniques.

More specifically, the present thesis covers three separate but interconnected parts. In the first
part, new algorithms for robust pitch tracking and for automatic determination of glottal closure
instants are developed. This step is necessary as accurate glottal analysis requires to process
pitch-synchronous speech frames. In the second part, a new non-parametric method based on
Complex Cepstrum is proposed for glottal flow estimation. In addition, a way to achieve this
decomposition asynchronously is investigated. A comprehensive comparative study of glottal flow
estimation approaches is also given. Relying on this expertise, the usefulness of glottal information
for voice pathology detection and expressive speech analysis is explored. In the third part, a new
excitation modeling called Deterministic plus Stochastic Model of the residual signal is proposed.
This model is applied to speech synthesis where it is shown to enhance the naturalness and quality
of the delivered voice. Finally, glottal signatures derived from this model are observed to lead to an
increase of identification rates for speaker recognition purpose.

Keywords: Information Technology, Voice Technology, Speech Processing, Speech Analysis,
Speech Synthesis, Speaker Recognition, Voice Pathology, Expressive Speech, Glottal flow, Source-tract
Separation, Pitch Estimation, Glottal Closure Instant, Excitation Modeling.
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General Introduction
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1.1 Speech Technology: What For?

1.1.1 Did you say "Speech Processing"?

Speech is certainly the most natural communication mode which humans use to interact with each
other. This can be explained by the fact that speech is characterized by a high delivery rate of
information. This information can be analyzed at several non-exclusive levels of description. At the
acoustic level [1], speech is studied as a mechanical wave that is an oscillation of pressure. Phonetics
[2] deals with the physical properties of speech sounds (phones): how it is produced by the articulatory
system, and how it is perceived by the auditory system. The phonological level [2] is the necessary
interface between phonetics and linguistical descriptions of higher levels. It introduces an abstract and
functional unit called phoneme, which has the property to convey a meaning. Morphology [3] focuses
on the formation and composition of words, while syntax [4] studies the formation and composition
of phrases and sentences from these words. The semantical level [5] is concerned with how meaning
is inferred from words and concepts. As for the last description level, pragmatics [6] analyses how
meaning is inferred from context. In this thesis, it is focused on the acoustic analysis of speech.

These several levels explain why language acquisition is such a highly complex task [7], which
is carried out by infants a long time after the learning of skills such as walking. Nonetheless, after
this long acquisition step, speech turns out to be one of the most efficient means of communication.
Therefore there is an important demand to incorporate speech as a possible modality in Human-
Computer Interactions (HCIs, [8]). This motivates the interest for a large variety of Speech Processing
applications.

In the broad sense, Speech Processing refers to the study of speech signals and the ensuing pro-
cessing methods. The main applications of Speech Processing can be categorized as follows:

1



GENERAL INTRODUCTION

• Speech Recognition: Speech Recognition refers to the task for a machine to recognize and under-
stand speech [9]. Main challenges are to reach high recognition rates for any speaker and in any
environment.

• Speech Synthesis: In Speech Synthesis, also called Text-to-Speech (TTS), the goal is to produce
the automatic lecture of an unknown text [10]. Challenges are typically expressed in terms of
naturalness and intelligibility of the produced voice.

• Speaker Recognition: Automatic Speaker Recognition refers to the use of a machine in order to
recognize a person from a spoken phrase [11]. Speaker Recognition is made of two main subfields
[12]: Speaker Verification (i.e to verify a person’s claimed identity from his voice) and Speaker
Identification (i.e there is no a priori identity claim, and the system decides who the person is).

• Voice Analysis: Voice Analysis is the study of speech sounds for the purpose of characterizing
non-standard speech, i.e exhibiting an affect, a voice disorder and so forth. Goals can be, for
example, to detect, quantify and qualify a voice pathology within a medical context [13], or to
study and synthesize expressive speech [14].

• Speech Enhancement: Speech Enhancement refers to the cleaning process which aims at reducing
the presence of noise in a corrupted signal, or the task of enhancing its intelligibility [15].

• Speech Coding: Speech Coding is the art of reducing the bit rate required to describe a speech
signal while preserving its quality [16]. This is a particular form of data compression (and sound
compression), important in the telecommunication area.

The positioning of this thesis with regard to these Speech Processing applications is described in
Section 1.3.

1.1.2 The Speech Technology Market

As an important component of Information Technology, the field of speech technology has exploded with
the advent and dazzling growth of telecommunication techniques. According to the Global Industry
Analysts (GIA), world speech technology market is forecast to reach US$20.9 billion by the year
2015 [17]. In that study, GIA focuses on the three following product segments: Speech Recognition,
Speech Synthesis and Speaker Recognition. The GIA report profiles 211 companies (including 231
divisions/subsidiaries) including many key and niche players [17]. To give an idea of the location of
speech technology companies around the world, Table 1.1 shows the repartition of the players considered
in [17].

Country Number of market players
United States 145

Canada 13
Germany 13

United Kingdom 16
Rest of Europe 24

Asia-Pacific 15
Middle-East 5

Table 1.1 - Global repartition of speech technology market players considered in [17].
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It is worth noting that these latter statistics do not encompass the budget spent by armies, most
of all by the US army which is known to invest collocal amounts of money in speech technology
applications.

A particularly attractive asset of the speech technology market is that it benefits from several
medium to long-term advantages [17]. This has allowed the speech market to stay afloat and perform
remarkably well even in the harsh financial crisis.

Besides the private sector, speech technology has caught the interest of a large research community.
To illustrate this, the Interspeech conference is the world’s largest and most comprehensive conference
on issues surrounding the science and technology of spoken language processing both in humans and in
machines. For its 2010 edition held in Makuhari, Japan, 1324 scientific articles were submitted1 (among
which 779 were included in the technical program), which reflects the strong interest in developing new
speech technology solutions.

1.2 Speech Production and Modeling

1.2.1 Speech Production

Organs intervening in the phonation process can be categorized into three main groups [18]: the lungs,
larynx and vocal tract. The lungs are the source of energy and their role is to provide an airflow
arising in the trachea. This airflow then reaches the larynx where it is modulated. The larynx houses
the vocal folds (see Figure 1.1), which are an essential component of phonation. The space comprised
between the vocal folds is defined as the glottis. The glottal modulation provides either a periodic
or a noisy source to the vocal tract. The vocal tract (see Figure 1.2) is made of the oral, nasal and
pharyngeal resonant cavities. Its role is to "color" the sound, i.e to define its timbre, by spectrally
shaping the glottal airflow [1]. The airflow modulated by the glottis and colored by the vocal tract is
then radiated by the lips. This variation of air pressure causes a traveling wave which is perceived as
speech by the listener [1].

Figure 1.1 - Tranversal view of the larynx. Glottis is defined as the space comprised between the vocal
folds. From Gray’s Anatomy of the Human Body, 20th edition.

This thesis focuses on the glottal component of the speech signal. The glottal behaviour manipulates
both pitch and volume, as well as the voice quality. Pitch represents the perceived fundamental
frequency of a sound, and allows the construction of "melody" in speech (i.e if a sound is "higher" or

1Interspeech Conference 2010, http://www.interspeech2010.org/
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Figure 1.2 - Representation of the phonation apparatus. Speech results from an airflow evicted from
the lungs, arising in the trachea, passing through the glottis, filtered by the vocal tract cavities and
finally radiated by the lips. From Gray’s Anatomy of the Human Body, 20th edition.

"lower"). The estimation of pitch from the speech signal is studied in Chapter 2. Pitch and volume are
important features for controlling stress and intonation of speech. As for the voice quality, it refers to
the laryngeal phonation style [19] and provides paralinguistic information. For example, voice quality
makes the difference between a soft, normal or loud phonation.

As previously mentioned, one may distinguish two modes in the glottal behaviour. During the
production of voiced sounds, the airflow arising from the trachea causes a quasi-periodic vibration of
the vocal folds [18]. On the opposite, when the glottal excitation is noisy, resulting sounds are qualified
as unvoiced. In this thesis, it is focused on the glottal characteristics during the production of voiced
speech.

Figure 1.3 gives an illustration of speech analysis on the sentence "The cranberry bog gets very
pretty in Autumn." uttered by a male speaker. Plot (a) shows the speech waveform as captured by a
microphone. The second plot is the so-called spectrogram of the speech signal, i.e a representation of the
energy distribution in the time-frequency domain. Plot (c) displays the corresponding pitch track. It
can be observed that pitch only exists for voiced regions of speech, where the signal is pseudo-periodic.

An important difficulty in glottal analysis is the difficulty in observing the glottal behaviour. Some
devices such as electroglottographs (EGG) or laryngographs measure the impedance between the vocal
folds [20], which is an image of the glottal opening. Another approach is the use of high-speed imaging
(typically around 3000 images/second, [21]) recorded by introducing a laryngoscope positioned to
visualize the larynx. A crucial drawback of these apparatus is that they are particularly uncomfortable
for the speaker. In addition, although they are informative about the glottal behaviour, they only
provide an image (e.g the glottal impedance, or surface) of the real glottal flow. For these reasons, this
thesis only focuses on designing techniques which solely rely on the audio speech signal captured by a
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Figure 1.3 - Illustration of a speech sound. The sentence "The cranberry bog gets very pretty in
Autumn." has been uttered by a male speaker. (a): The speech waveform, (b): its spectrogram, (c): the
pitch track.

microphone, as it is the case for the great majority of Speech Processing applications.
A more thorough introduction on the processing of the glottal flow is given in Chapter 4.

1.2.2 Speech Modeling

A large number of speech models rely on a source-filter approach [18]. In such an approach, the source
refers to the excitation signal produced by the vocal folds at the glottis, and the filtering operation to
the spectral coloring carried out by the vocal tract cavities. In several speech processing applications,
separating these two contributions is important as it could lead to their distinct characterization and
modeling. This is advantageous since these two components act on different properties of the speech
signal.

The actual excitation signal is the airflow arising from the trachea and passing through the vocal
folds, and is called the glottal flow [1]. However, its estimation directly from the speech waveform
is a typical blind separation problem since neither the glottal nor the vocal tract contributions are
observable. This makes the glottal flow estimation a particularly complex issue. Part II of this thesis
adresses the problem of automatically estimating the glottal flow directly from the speech waveform,
and how it can be applied in Voice Analysis.

Due to the aforementioned hindrances, using the real glottal flow in usual speech processing systems
is commonly avoided. For this reason, it is generally preferred to consider, for the filter, the contribution
of the spectral envelope of the speech signal, and for the source, the residual signal obtained by
inverse filtering. Although not exactly motivated by a physiological interpretation, this approach has
the advantage of being more practical while giving a sufficiently good approximation to the actual
deconvolution problem, i.e the problem of source-tract (or source-filter) separation.

Methods parameterizing the spectral envelope (i.e the filter), such as the well-known Linear Pre-
dictive Coding (LPC) or Mel Frequency Cepstral (MFCC) features [22], are widely used in almost
every field of Speech Processing. Figure 1.4 illustrates the LPC technique for the windowed segment
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of real speech shown in plot (a). This speech frame is a segment of the sentence analyzed in Figure
1.3. It is observed in plot (b) that the spectral envelope of the speech signal (thin line) is correctly
estimated via the LPC modeling (solid line). Note that the speech spectrum, as displayed in plot(b),
can be seen as a vertical slice in the spectrogram of Figure 1.3(b), at the considered analysis time.
Various peaks can be noticed in this spectrum. They correspond to the vocal tract resonances, called
formants. The first four formants, denoted F1 to F4, are indicated on the plot. The residual signal
obtained via inverse filtering (i.e after removing the contribution of the spectral envelope) is displayed
in plot (c), and is referred to as the LPC source or excitation signal. For this example, the speech
and the residual signals are periodic, and consequently the corresponding sound is qualified as voiced.
Particular instants of significant excitation are observed in the residual signal. These are referred to
as Glottal Closure Instants (GCIs). Their automatic determination from the speech signal is studied
in Chapter 3. It is also seen in plot (d) that the amplitude spectrum of the residual signal is almost
flat, which is a result of the "whitening" process (i.e the effects of the vocal tract resonances have been
removed) achieved by inverse filtering.

Contrarily to methods capturing the spectral envelope (i.e modeling the filter), techniques modeling
the excitation signal are still not well established and there might be a lot to be gained by incorporating
such a modeling in several speech processing applications. This is the object of Part III which proposes
a new model of the residual signal, and investigates its application to Speech Synthesis and Speaker
Recognition.
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Figure 1.4 - Illustration of the LPC method. (a): the speech signal (thin line) and the applied window
(solid line), (b): the magnitude spectrum of the speech signal (thin line) and its LPC spectral envelope
(solid line), with the four first formants indicated for information, (c): the LPC residual signal obtained
by inverse filtering, (d): the magnitude spectrum of the residual signal.

1.3 Contributions and Structure of the Thesis

The contribution of the present thesis is schematized in Figure 1.5. The main outter circle (in purple)
is Speech Analysis, which is a field aiming at developping tools of signal processing applied to the
speech signal. As explained in Section 1.2.1, during the mechanism of phonation, an airflow is evicted
from the lungs, arises in the trachea and is modulated by its passage through the space delimited by
the vocal folds and called glottis [1]. Glottal Analysis (the middle circle in green in Figure 1.5) then
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refers to the study of methods using information from the glottal component of speech. This thesis
(inner circle in red in Figure 1.5) will present some advances made in the field of Glottal Analysis.

This Thesis

Glottal Analysis

Speech Analysis

Speech

Enhancement

Voice

Analysis

Speech

Synthesis

Speaker

Recognition

Speech

Recognition

Speech

Coding

ch 8, 9

ch 12

ch12

ch13

Figure 1.5 - Schematic representation of the contribution of the present thesis. Its goal is to develop
new methods of Speech Analysis using glottal information, and to integrate them in several applications
of Speech Processing: Voice Analysis in Chapters 8 and 9, Speech Synthesis and Speech Coding in
Chapter 12, and Speaker Recognition in Chapter 13.

The six black ellipses in Figure 1.5 represent the six main applications of Speech Processing intro-
duced in Section 1.1.1. It is worth noting that although these latter are not independent and should
therefore exhibit some overlap, this is not displayed in Figure 1.5 for the sake of clarity. Since methods
designed in Speech Analysis are fundamental tools of signal processing, they can be applied to all fields
of Speech Processing. The goal of this thesis is to develop new techniques of Glottal Analysis, and
to integrate them in several applications of Speech Processing: Voice Analysis in Chapters 8 and 9,
Speech Synthesis and Speech Coding in Chapter 12, and Speaker Recognition in Chapter 13. Albeit
glottal information could be useful for Speech Recognition and Speech Enhancement, these issues are
not tackled in the frame of this thesis.

Pitch and GCI determination

Glottal Flow Estimation

Pathology

Detection

Expressivity

Analysis

Excitation Modeling

Speech

Synthesis

Speaker

Recognition

Fundamental Tools

Estimation & Modeling

Applications

Figure 1.6 - Schematic structure of the thesis in three layers. Part I is represented in blue, Part II
in red and Part III in green.
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GENERAL INTRODUCTION

The structure of this thesis is schematized in Figure 1.6, according to three abstraction levels: the
development of fundamental tools, the proposition of new techniques for glottal flow estimation and
modeling, and their integration within various speech processing applications. The thesis is divided
into three parts, represented by three different colours in Figure 1.6:

• Part I investigates the development of efficient and robust tools using only the speech recordings,
which are necessary for precise Glottal Analysis. Chapter 2 focuses on robust pitch tracking,
where, even in adverse conditions, the goal is to determine the voiced regions of speech and to
extract the pitch contour. Chapter 3 studies the automatic detection of Glottal Closure Instants
(GCIs), these particular moments of significant excitation of the vocal tract. The accurate,
reliable and robust estimation of both the pitch and GCI locations is required in several speech
processing systems, and in particular for Glottal Analysis. Indeed, for such applications, it is
preferable to process speech frames synchronized on GCIs and whose length is proportional to
the pitch period. Algorithms proposed in Chapters 2 and 3 are thus fundamental tools for Speech
Analysis.

• Part II addresses the issue of glottal flow estimation from the speech waveform. An introduction
on this topic as well as a presentation of the state-of-the-art methods are first given in Chapter
4. The three following chapters focus on the development and assessment of a non-parametric
technique of glottal flow estimation which exploits phase properties of the speech signal. The
theoretical framework as well as a first evaluation of this method are given in Chapter 5. This
approach is quantitavely compared to other existing techniques of glottal flow estimation in
Chapter 6. Finally, Chapter 7 aims at removing the constraint of GCI-synchronization in the
proposed method. Based on the study led in these three chapters, the remainder of Part II
then targets incorporating glottal features within two specific applications of Speech Processing:
automatic voice pathology detection in Chapter 8 and expressive speech analysis in Chapter
9. Finally, Chapter 10 highlights the main results of glottal flow estimation and applicability
obtained in Part II.

• Part III proposes a new model of the residual signal. The theoretical framework and properties
of this model are thoroughly described in Chapter 11. The two next chapters are then targeted
at applying this new excitation model within two important fields of Speech Processing. Chapter
12 integrates this model in a vocoder for Speech Synthesis, while Chapter 13 investigates the
potential use of glottal signatures derived from this model for Speaker Recognition. In both
applications, it is shown that the proposed model outperforms other state-of-the-art excitation
modelings.

Finally Chapter 14 concludes and summarizes the main contributions of this thesis.
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ROBUST PITCH TRACKING BASED ON RESIDUAL HARMONICS

Abstract

This chapter focuses on the problem of pitch tracking in noisy conditions. A method
exploiting the harmonics of the residual signal is presented. The proposed criterion is
used both for pitch estimation, as well as for determining the voicing segments of speech.
In the experiments, the method is compared to six state-of-the-art pitch trackers on the
Keele and CSTR databases. The proposed technique is shown to be particularly robust
to additive noise, leading to a significant improvement in adverse conditions.

This chapter is based upon the following publication:

• Thomas Drugman, Abeer Alwan, Robust Pitch Tracking Based on Residual Harmonics, Inter-
speech Conference, Firenze, Italy, 2011.

Many thanks to Prof. Abeer Alwan from University of California, Los Angeles, for her helpful
guidance and fruitful discussions.
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2.1 Introduction

2.1 Introduction

Pitch tracking refers to the task of estimating the contours of the fundamental frequency for voiced
segments. Such a system is of particular interest in several applications of speech processing, such as
speech coding, analysis, synthesis or recognition. While most current pitch trackers perform well in
clean conditions, their performance rapidly degrades in noisy environments and the development of
accurate and robust algorithms still remains a challeging open problem.

Techniques estimating the fundamental frequency from speech signals can be classified according
to the features they rely on [1]. Some methods use properties in the time domain, others focus on the
periodicity of speech as manifested in the spectral domain, while a last category exploits both spaces.
Besides, this information can be processed in a deterministic way, or using a statistical approach [1].
This chapter proposes a pitch tracking method exploiting the harmonics contained in the spectrum
of the residual signal. The idea of using a summation of harmonics for detecting the fundamental
frequency is not new. In [2], Hermes proposed the use of a subharmonic summation so as to account
for the phenomenon of virtual pitch. This approach was inspired by the use of spectral and cepstral
comb filters [3]. In [4], Sun suggested the use of the Subharmonic-to-Harmonic Ratio for estimating
the pitch frequency and for voice quality analysis. The method proposed in this chapter is different in
several points. First, the spectrum of the residual signal (and not of the speech signal) is inspected. As
in the Simplified Inverse Filter Tracking (SIFT) algorithm (which relies on the autocorrelation function
computed on the residual signal, [5]), flattening the amplitude spectrum allows to minimize the effects
of both the vocal tract resonances and of the noise. Secondly, the harmonic-based criterion used for
the pitch estimation is different from those employed in the two aforementioned approaches. Besides
the proposed criterion is also used for discriminating between voiced and unvoiced regions of speech.
Note that harmonic-based Voice Activity Detector (VAD) has also been exploited in [6].

The structure of the chapter is the following. Section 2.2 describes the principle of the proposed
technique. An extensive quantitative assessment of its performance in comparison with other state-
of-the-art techniques is given in Section 2.3, focusing particularly on noise robustness. Section 2.3.1
presents the adopted experimental protocol. The implementation details of the proposed method are
discussed in Section 2.3.2. Methods compared in this work are presented in Section 2.3.3 and results
of the evaluation are provided in Section 2.3.4.

2.2 Pitch tracking based on residual harmonics

The proposed method relies on the analysis of the residual signal. For this, an auto-regressive modeling
of the spectral envelope is estimated from the speech signal s(t) and the residual signal r(t) is obtained
by inverse filtering. This whitening process has the advantage of removing the main contributions of
both the noise and the vocal tract resonances. For each Hanning-windowed frame, covering several
cycles of the resulting residual signal r(t), the amplitude spectrum R(f) is computed. R(f) has a
relatively flat envelope and, for voiced segments of speech, presents peaks at the harmonics of the
fundamental frequency F0. From this spectrum, and for each frequency in the range [F0,min, F0,max],
the Summation of Residual Harmonics (SRH) is computed as:

SRH(f) = R(f) +

Nharm
∑

k=2

[R(k · f)−R((k −
1

2
) · f)]. (2.1)

Considering only the term R(k · f) in the summation, this equation takes the contribution of the
Nharm first harmonics into account. It could then be expected that this expression reaches a maximum
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for f = F0. However, this is also true for the harmonics present in the range [F0,min, F0,max]. For this
reason, the substraction by R((k − 1

2) · f) allows to significantly reduce the relative importance of the
maxima of SRH at the even harmonics. The estimated pitch value F ∗

0 for a given residual frame is
thus the frequency maximizing SRH(f) at that time.

Figure 2.1 displays the typical evolution of SRH for a segment of female voice. The pitch track
(around 200 Hz) clearly emerges. Moreover, no particularly high value of SRH is observed during
the unvoiced regions of speech. Therefore, SRH can also be used to provide voicing decisions by a
simple local thresholding. More precisely, a frame is determined to be voiced if SRH(F ∗

0 ) is greater
than a fixed threshold θ. Note that for the comparison with θ, the residual spectrum R(f) needs to
be normalized in energy for each frame.
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Figure 2.1 - Evolution of SRH for a segment of clean speech uttered by a female speaker.

It is worth noting that, in Equation 2.1, the risk of ambiguity with odd harmonics is not addressed.
This may be problematic for low-pitched voices for which the third harmonic may be present in the
initial range [F0,min, F0,max]. Albeit we made several attempts to incorporate a correction in Equation
2.1 by substracting a term in R((k ± 1

3) · f), no improvement was observed (this was especially true
in noisy conditions). For this reason, the proposed algorithm works in two steps. In the first step,
the described process is performed using the full range [F0,min, F0,max], from which the mean pitch
frequency F0,mean of the considered speaker is estimated. In the second step, the final pitch tracking
is obtained by applying the same process but in the range [0.5 · F0,mean; 2 · F0,mean]. It can be indeed
assumed that a normal speaker will not exceed these limits. Note that this idea of restricting the range
of F0 for a given speaker is similar to what has been proposed in [7] (for the choice of the window
length).

Figure 2.2 illustrates the proposed method for a segment of female speech, both in clean conditions,
and with a Jet noise at 0dB of Signal-to-Noise Ratio (SNR). In the top plot, the pitch ground truth and
the estimated fundamental frequency F ∗

0 are displayed. A close agreement between the estimates and
the reference can be noticed during voiced speech. Interestingly, this is true for both clean and noisy
speech (except on a short period of 5 frames where F ∗

0 is half the actual fundamental frequency). It is
worth noting that no post-correction of the pitch estimation, using for example dynamic programing,
was applied. In the bottom plot, the values of SRH(F ∗

0 ), together with the ideal voiced-unvoiced
decisions, are exhibited since they are used for determining the voicing boundaries. It is observed that
SRH(F ∗

0 ) conveys a high amount of information about the voicing decisions. However, in adverse
conditions, since the relative importance of harmonics becomes weaker with the presence of noise, the
values of SRH(F ∗

0 ) are smaller during voiced regions, making consequently the decisions more difficult.
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2.3 Experiments

2.3.1 Experimental Protocol

The experimental protocol is divided into two steps: training and testing. The goal of the training phase
is to optimize the several parameters used by the proposed algorithm described in Section 2.2. During
the testing, the proposed method is compared to other state-of-the-art methods of pitch tracking, both
in clean and noisy conditions. For assessing the performance of a given method, the four following
measures are used [8]:

• The Voicing Decision Error (VDE) is the proportion of frames for which an error of the
voicing decision is made.

• The Gross Pitch Error (GPE) is the proportion of frames, where the decisions of both the
pitch tracker and the ground truth are voiced, for which the relative error of F0 is higher than a
threshold of 20%.

• The Fine Pitch Error (FPE) is defined as the standard deviation (in %) of the distribution
of the relative error of F0 for which this error is below a threshold of 20%.

• The F0 Frame Error (FFE) is the proportion of frames for which an error (either according
to the GPE or the VDE criterion) is made. FFE can be seen as a single measure for assessing
the overall performance of a pitch tracker.

The noisy conditions are simulated by adding to the original speech signal a noise at 0 dB of SNR.
The noise signals were taken from the Noisex-92 database [9]. Since the main scope of this chapter is
the study of the robustness of pitch trackers, several types of noise were considered: speech babble,
car interior, factory, jet cockpit, and white noise.

During the training phase, the APLAWD database [10] is used. It consists of ten repetitions of
five phonetically balanced English sentences spoken by each of five male and five female talkers, with a
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total duration of about 20 minutes. The pitch ground truth was extracted by using the autocorrelation
function on the parallel electroglottographic recordings.

For the testing, both the Keele and CSTR databases were used, for comparison purpose with other
studies. The Keele database [11] contains speech from 10 speakers with five males and five females,
with a bit more of 30 seconds per speaker. As for the CSTR database [12], it contains five minutes
of speech from one male and one female speaker. For all datasets, recordings sampled at 16kHz were
considered, and the provided pitch references were used as a ground truth.

2.3.2 Parameter Optimization for the Proposed Method

In this training step, each parameter is optimized so as to minimize the overall FFE, averaged over
all speakers of the APLAWD database, and for both clean and noisy conditions. According to this
objective framework, the optimal parameter values are the following. The LPC order for obtaining the
residual signal by inverse filtering is set to 12, although it was observed not to have a critical impact
in the range between 10 and 18. A too high order tends to overfit the spectral envelope, which may be
detrimental in noisy conditions, while a too low value does not sufficiently remove the contributions of
both the vocal tract and the noise. The optimal length for framing the residual signal is chosen to be
100 ms (while the frame shift is fixed to 10 ms). To illustrate this, Figure 2.3 shows the impact of the
window length on the FFE for clean and noisy conditions. It turns out that a length of 100 ms makes
a good compromise for being efficient in any environment. This means that our algorithm requires a
large contextual information for performing well. Note that we observed that this does not affect the
capabilities of the proposed method to track rapidly-varying pitch contours, maintaining low values of
both GPE and FPE. The optimal number of harmonics used in Equation 2.1 is Nharm = 5. Considering
more harmonics is detrimental in adverse conditions, as the noise affects strongly the periodicity of
the speech signal, and only the few first harmonic peaks emerge in the spectrum. Finally, the optimal
threshold θ used for the voicing decisions is 0.07, as it gave the best tradeoff between false positive and
false negative decisions.
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Figure 2.3 - Influence of the window length on FFE, averaged in clean and noisy conditions.

2.3.3 Methods compared in this work

In the following, the proposed technique (SRH) is compared to the seven following methods of pitch
estimation and tracking:

• Get_F0: Included in the ESPS package, this method is an implementation of the RAPT algo-
rithm [13]. In this work, we used the version available in Wavesurfer
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<http://www.speech.kth.se/wavesurfer/>.

• SHRP: This spectral technique is based on the Subharmonic to Harmonic Ratio, as proposed
in [4]. For our tests, we used the implementation available in
<http://mel.speech.nwu.edu/sunxj/pda.htm>.

• TEMPO: This technique is based on a fixed point analysis [14] and is available in the
STRAIGHT toolkit <http://www. wakayama-u.ac.jp/∼kawahara/PSSws/>.

• AC: This method relies on an accurate autocorrelation function and is implemented in the Praat
toolbox <http://www.praat.org>. It was shown to outperform the original autocorrelation based
and the cepstrum-based techniques [15].

• CC: This approach makes use of the crosscorrelation function [16] and is also implemented in
the Praat toolbox.

• YIN: This algorithm is one of the most popular and most efficient method of pitch estimation.
It is based on the autocorrelation technique with several modifications that combine to prevent
errors [17]. Since YIN only provides F0 estimates, it is here coupled with the voiced-unvoiced
decisions taken by our proposed SRH approach. The YIN implementation can be freely found at
<http://www.auditory.org/postings/2002/26.html>.

• SSH: The Summation of Speech Harmonics technique is given for comparison purpose as the
proposed approach applied this time on the speech signal, and not on its residual as done in
SRH. The contribution of the spectral envelope mainly due to the vocal tract is therefore not
removed. Note that for SSH the optimal value of the threshold θ is 0.18.

All methods were used with their default parameter values for which they were optimized. The
frame shift is fixed to 10 ms, and the range of F0 set to [50 Hz,400 Hz].

2.3.4 Results

Figures 2.4 and 2.5 show a comparison of the FFE (as it is an overall measure for assessing the
performance of a pitch tracker) for all methods and in all conditions, respectively for female and male
speakers. In clean speech, it is seen that the proposed SSH and SRH methods give a performance
comparable to other techniques, while Get_F0 outperforms all other approaches for both male and
female speakers. On the opposite, the advantage of SRH is clearly noticed for adverse conditions. In
9 out of the 10 noisy cases (5 noise types and 2 genders), SRH provides better results than existing
methods, showing generally an appreciable robustness improvement. The only unfavourable case is
the estimation with a Babble noise for male speakers. This may be explained by the fact that this
noise highly degrades the speech spectral contents at low frequencies. The five first residual harmonics
used by SRH may then be strongly altered, leading to a degradation of performance. Inspecting the
performance of SSH, it turns out that it exhibits among the worst results for female speakers in noisy
environments, but is almost as efficient as SRH for male voices.

Tables 2.1 and 2.2 present the detailed results of pitch tracking respectively for clean speech, and for
noisy conditions (averaged over all noise types at 0dB of SNR). On clean recordings, Get_F0 provides
the best results in terms of VDE and FFE on both genders, while the best GPE is obtained by the
proposed method SRH for female voices, and by TEMPO for male speakers. Regarding its efficiency in
terms of FPE, albeit having the slightly largest values, SRH has a performance sensibly comparable to
the state-of-the-art, confirming its ability to also capture the pitch contour details. On noisy speech,
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Figure 2.4 - F0 Frame Error (%) for female speakers and for all methods in six conditions: clean
speech and noisy speech at 0dB of SNR with five types of noise.
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Figure 2.5 - F0 Frame Error (%) for male speakers and for all methods in six conditions: clean
speech and noisy speech at 0dB of SNR with five types of noise.

SRH clearly outperforms all other approaches, especially for female speakers where the FFE is reduced
of at least 8.5% (except for YIN which uses the proposed VAD from SRH). This gain is also substantial
for male voices with regard to existing approaches (consequently leaving out of comparison the SSH
and the modified YIN techniques), with a decrease of 5.3% of FFE, and of 5.7% regarding the errors on
the voicing decisions. It is worth noting the remarkably good performance of SRH for female voices in
noisy environments, providing very low values of VDE and GPE (and thus FFE). All methods (except
SSH in adverse conditions) are also observed to give better results for female speakers than for male
voices. Finally, it is interesting to emphasize that, while relying on the same voicing decisions, YIN
leads in all conditions to a greater GPE than SRH, especially for noisy recordings. This confirms the
quality of SRH both as a VAD and for pitch contour estimation.
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2.4 Conclusion

Female Male
VDE GPE FPE FFE VDE GPE FPE FFE

Get_F0 3.74 2.78 2.95 4.92 5.34 1.79 3.06 6.11
SHRP 7.01 2.03 2.52 7.83 10.2 2.74 3.17 11.4

TEMPO 5.38 1.51 3.05 6.01 9.28 0.93 3.13 9.66
AC 6.81 1.50 2.68 7.41 8.02 1.40 2.77 8.59
CC 8.41 1.76 2.77 9.15 9.25 2.23 3.44 10.2
YIN 7.29 1.88 2.95 8.06 8.34 2.47 2.93 9.38
SSH 5.81 4.67 2.76 7.49 8.87 2.45 3.31 9.88
SRH 7.29 1.29 3.10 7.81 8.34 1.95 3.46 9.15

Table 2.1 - Detailed pitch tracking results in clean conditions for both male and female speakers.

Female Male
VDE GPE FPE FFE VDE GPE FPE FFE

Get_F0 20.8 14.8 2.4 24.9 27.7 2.7 2.7 28.3
SHRP 27.0 11.5 1.9 29.3 30.1 6.8 2.8 31.5

TEMPO 25.2 4.4 3.9 25.8 36.8 16.7 3.8 37.6
AC 20.5 14.2 2.4 24.3 28.2 5.9 2.4 29.6
CC 21.1 18.0 2.7 26.1 27.8 7.9 3.0 29.8
YIN 15.1 19.0 3.0 21.2 22.1 11.9 2.8 25.2
SSH 24.2 39.1 1.9 32.1 23.3 6.3 2.8 25.1
SRH 15.1 2.7 2.6 16.0 22.1 4.0 2.7 23.1

Table 2.2 - Detailed pitch tracking results in noisy conditions (averaged over all noise types at 0 dB
of SNR), for both male and female speakers.

2.4 Conclusion

This chapter described a simple method of pitch tracking by focusing on the spectrum of the residual
signal. A criterion based on the Summation of Residual Harmonics (SRH) is proposed both for pitch
estimation and for the determination of voicing boundaries. A comparison with six state-of-the-art
pitch trackers is performed in both clean and noisy conditions. A clear advantage of the proposed
approach is its robustness to additive noise. In 9 out of the 10 noisy experiments, SRH is shown to
lead to a significant improvement, while its performance is comparable to other techniques in clean
conditions.

21



ROBUST PITCH TRACKING BASED ON RESIDUAL HARMONICS

22



BIBLIOGRAPHY

Bibliography

[1] W. Hess, S. Furui, and M. Sondhi. Pitch and voicing determination. In Advances in Speech Signal
Processing, New York, pages 3–48, 1992.

[2] D. J. Hermes. Measurement of pitch by subharmonic summation. In JASA, volume 83, pages
257–264, 1988.

[3] P. Martin. A comparison of pitch detection by cepstrum and spectral comb analysis. In Proc.
ICASSP, pages 180–183, 1982.

[4] X. Sun. Pitch determination and voice quality analysis using subharmonic-to-harmonic ratio. In
Proc. ICASSP, volume 1, pages 333–336, 2002.

[5] J. D. Markel. The SIFT algorithm for fundamental frequency estimation. In IEEE Trans. Audio
Electroacoust., volume AE-20, pages 367–377, 1972.

[6] L. Tan, B. Borgstrom, and A. Alwan. Voice activity detection using harmonic frequency compo-
nents in likelihood ratio test. In Proc. ICASSP, pages 4466–4469, 2010.

[7] B. Yegnanarayana and K.S.R. Murty. Event-based instantaneous fundamental frequency estima-
tion from speech signals. In IEEE Trans. Audio, Speech and Language Processing, volume 17,
pages 614–624, 2009.

[8] W. Chu and A. Alwan. Reducing f0 frame error of f0 tracking algorithms under noisy conditions
with an unvoiced/voiced classification frontend. In Proc. ICASSP, pages 3969–3972, 2009.

[9] Online. Noisex-92. In http://www.speech.cs.cmu.edu/comp.speech/Sectionl/Data/noisex.html.

[10] G. Lindsey, A. Breen, and S. Nevard. SPAR’s archivable actual-word databases. Technical report,
University College London, 1987.

[11] F. Plante, G. Meyer, and W.A. Ainsworth. A pitch extraction reference database. In Eurospeech,
pages 837–840, 1995.

[12] P. Bagshaw, S. Hiller, and M. Jack. Enhanced pitch tracking and the processing of f0 contours
for computer aided intonation teaching. In Eurospeech, pages 1003–1006, 1993.

[13] D. Talkin. A robust algorithm for pitch tracking (RAPT). In Speech coding and synthesis, Eds.:
Elsevier Science, pages 495–518, 1995.

[14] H. Kawahara, H. Katayose, A. de Cheveigne, and R. Patterson. Fixed point analysis of fre-
quency to instantaneous frequency mapping for accurate estimation of f0 and periodicity. In Proc.
Eurospeech, volume 6, pages 2781–2784, 1999.

23



BIBLIOGRAPHY

[15] P. Boersma. Accurate short-term analysis of fundamental frequency and the harmonics-to-noise
ratio of a sampled sound. In Proc. Inst. Phonetic Sci., volume 17, pages 97–110, 1993.

[16] R. Goldberg and L. Riek. A practical handbook of speech coders. In Boca Raton, FL: CRC, 2000.

[17] A. de Cheveigné and H. Kawahara. Yin, a fundamental frequency estimator for speech and music.
J. Acoust. Soc. Am., 111(4):1917–1930, 2002.

24



Chapter 3

Detection of Glottal Closure Instants from

Speech Signals: a Quantitative Review

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Methods Compared in this Chapter . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Hilbert Envelope-based method . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 The DYPSA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.3 The Zero Frequency Resonator-based technique . . . . . . . . . . . . . . . . . . 30

3.2.4 The YAGA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 A New Method for GCI Detection: the SEDREAMS Algorithm . . . . . . 33

3.3.1 Determining intervals of presence using a mean-based signal . . . . . . . . . . . 33

3.3.2 Refining GCI locations using the residual excitation . . . . . . . . . . . . . . . 34

3.4 Assessment of GCI Extraction Techniques . . . . . . . . . . . . . . . . . . . 36

3.4.1 Speech Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2 Objective Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Experiments on Clean Speech Data . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Comparison with Electroglottographic Signals . . . . . . . . . . . . . . . . . . . 39

3.5.2 Performance based on Causal-Anticausal Deconvolution . . . . . . . . . . . . . 41

3.6 Robustness of GCI Extraction Methods . . . . . . . . . . . . . . . . . . . . . 42

3.6.1 Robustness to an Additive Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6.2 Robustness to Reverberation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Computational Complexity of GCI Extraction Methods . . . . . . . . . . . 44

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

25



DETECTION OF GLOTTAL CLOSURE INSTANTS FROM SPEECH SIGNALS

Abstract

The pseudo-periodicity of voiced speech can be exploited in several speech processing
applications. This requires however that the precise locations of the Glottal Closure
Instants (GCIs) are available. The focus of this chapter is the evaluation of automatic
methods for the detection of GCIs directly from the speech waveform. A new procedure
to determine GCIs, called the Speech Event Detection using the Residual Excitation And
a Mean-based Signal (SEDREAMS) algorithm, is proposed. The procedure is divided into
two successive steps. First a mean-based signal is computed, and intervals where GCIs are
expected to occur are extracted from it. Secondly, at each interval a precise position of the
GCI is assigned by locating a discontinuity in the Linear Prediction residual. SEDREAMS
is compared to four state-of-the-art GCI detection algorithms using six different databases
with contemporaneous electroglottographic recordings as ground truth, and containing
many hours of speech by multiple speakers. The four techniques to which SEDREAMS is
compared are the Hilbert Envelope-based detection (HE), the Zero Frequency Resonator-
based method (ZFR), the Dynamic Programming Phase Slope Algorithm (DYPSA) and
the Yet Another GCI Algorithm (YAGA). The efficacy of these methods is first evaluated
on clean speech, both in terms of reliabililty and accuracy. Their robustness to additive
noise and to reverberation is also assessed. A further contribution of this chapter is
the evaluation of their performance on a concrete application of speech processing: the
causal-anticausal decomposition of speech. It is shown that for clean speech, SEDREAMS
and YAGA are the best performing techniques, both in terms of identification rate and
accuracy. ZFR and SEDREAMS also show a superior robustness to additive noise and
reverberation.

This chapter is based upon the following publications:

• Thomas Drugman, Thierry Dutoit, Glottal Closure and Opening Instant Detection from Speech
Signals, Interspeech Conference, Brighton, United Kingdom, 2009.

• Thomas Drugman, Mark Thomas, Jon Gudnason, Patrick Naylor, Thierry Dutoit, Detection
of Glottal Closure Instants from Speech Signals: a Quantitative Review, IEEE Transactions on
Audio, Speech and Language Processing, Accepted for publication.

Many thanks to Dr. Mark Thomas (Imperial College of London), Dr. Jon Gudnason (University
of Iceland) and Prof. Patrick Naylor (Imperial College of London) for their fruitful collaboration on
the quantitative review of methods for Glottal Closure Instant detection.
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3.1 Introduction

3.1 Introduction

Glottal-synchronous speech processing is a field of speech science in which the pseudoperiodicity of
voiced speech is exploited. Research into the tracking of pitch contours has proven useful in the field of
phonetics [1] and speech quality assessment [2]; however more recent efforts in the detection of Glottal
Closure Instants (GCIs) enable the estimation of both pitch contours and, additionally, the boundaries
of individual cycles of speech. Such information has been put to practical use in applications including
prosodic speech modification [3], speech dereverberation [4], glottal flow estimation [5], speech synthesis
[6], [7], data-driven voice source modelling [8] and causal-anticausal deconvolution of speech signals [9].

Increased interest in glottal-synchronous speech processing has brought about a corresponding
demand for automatic and reliable detection of GCIs from both clean speech and speech that has been
corrupted by acoustic noise sources and/or reverberation. Early approaches that search for maxima
in the autocorrelation function of the speech signal [10] were found to be unreliable due to formant
frequencies causing multiple maxima. More recent methods search for discontinuities in the linear
production model of speech [11] by deconvolving the excitation signal and vocal tract filter with Linear
Predictive Coding (LPC) [12]. Preliminary efforts are documented in [5]; more recent algorithms use
known features of speech to achieve more reliable detection [13, 14, 15]. Deconvolution of the vocal
tract and excitation signal by homomorphic processing [16] has also been used for GCI detection
although its efficacy compared with LPC has not been fully researched. Various studies have shown
that, while linear model-based approaches can give accurate results on clean speech, reverberation can
be particularly detrimental to performance [4, 17].

Methods that use smoothing or measures of energy in speech signal are also common. These
include the Hilbert Envelope [18], Frobenius Norm [19], Zero-Frequency Resonator (ZFR) [20] and
SEDREAMS [21]. Smoothing of the speech signal is advantageous because the vocal tract resonances,
additive noise and reverberation are attenuated while the periodicity of the speech signal is preserved.
A disadvantage lies in the ambiguity of the precise time instant of the GCI; for this reason LP residual
can be used in addition to smoothed speech to obtain more accurate estimates [14, 21]. Smoothing on
multiple dyadic scales is exploited by wavelet decomposition of the speech signal with the Multiscale
Product [22] and Lines of Maximum Amplitudes (LOMA) [23] to achieve both accuracy and robustness.
The YAGA algorithm [15] employs both multiscale processing and the linear speech model.

The aim of this chapter is two-fold. First a new algorithm of GCI determination from the speech
signal, called SEDREAMS, is proposed. The second goal is to provide a review and objective evaluation
with four contemporary methods for GCI detection, namely Hilbert Envelope-based method [18],
DYPSA [14], ZFR [20] and YAGA [15] algorithms. These techniques were chosen as they were shown
to be currently among the best performing GCI estimation methods, and since they rely on very
different approaches. They are here evaluated together with SEDREAMS against reference GCIs
provided by an Electroglottograph (EGG) signal on six databases, of combined duration 232 minutes,
containing contemporaneous recordings of EGG and speech. Performance is also evaluated in the
presence of additive noise and reverberation. A novel contribution of this chapter is the application
of the algorithms to causal-anticausal deconvolution [9], which provides additional insight into their
performance in a real-world problem.

The remainder of this chapter is organised as follows. In Section 3.2 the four state-of-the-art
algorithms under test are described. The new proposed approach for GCI estimation is presented
in Section 3.3. The evaluation techniques are described in Section 3.4. Sections 3.5 and 3.6 discuss
the performance results on clean and noisy/reverberant speech respectively. Section 3.7 compares the
methods in terms of computational complexity. Finally conclusions are given in Section 3.8.
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3.2 Methods Compared in this Chapter

This section presents four of the main representative state-of-the-art methods for automatically de-
tecting GCIs from speech waveforms. These techniques are detailed here below and their reliability,
accuracy, robustness and computational complexity will be compared in Sections 3.5, 3.6 and 3.7 to
our new method of GCI detection described in Section 3.3. It is worth noting at this point that all
methods assume a positive polarity of the speech signal. Polarity should then be verified and corrected
if required, using an algorithm such as [24].

3.2.1 Hilbert Envelope-based method

Several approaches relying on the Hilbert Envelope (HE) have been proposed in the literature [25, 26,
27]. In this chapter, a method based on the HE of the Linear Prediction (LP) residual signal (i.e the
signal whitened by inverse filtering after removing an auto-regressive modeling of the spectral envelope)
is considered.

Figure 3.1 illustrates the principle of this method for a short segment of voiced speech (Fig.3.1(a)).
The corresponding synchronized derivative of the ElectroGlottoGraph (dEGG) is displayed in
Fig.3.1(e), as it is informative about the actual positions of both GCIs (instants where the dEGG
has a large positive value) and GOIs (instants of weaker negative peaks between two successive GCIs).
The LP residual signal (shown in Fig.3.1(b)) contains clear peaks around the GCI locations. Indeed
the impulse-like nature of the excitation at GCIs is reflected by discontinuities in this signal. It is also
observed that for some glottal cycles (particularly before 170 ms or beyond 280 ms) the LP residual
also presents clear discontinuities around GOIs. The resulting HE of the LP residual, containing large
positive peaks when the excitation presents discontinuities, and its Center of Gravity (CoG)-based
signal are respectively exhibited in Figures 3.1(c) and 3.1(d). Denoting He(n) the Hilbert envelope of
the residue at sample index n, the CoG-based signal is defined as:

CoG(n) =

∑N
m=−N m · w(m)He(n+m)
∑N

m=−N w(m)He(n+m)
(3.1)

where w(m) is a windowing function of length 2N + 1. In this work a Blackman window whose
length is 1.1 times the mean pitch period of the considered speaker was used. We empirically reported
in our experiments that using this window length led to a good compromise between misses and
false alarms (i.e to the best reliability performance). Once the CoG-based signal is computed, GCI
locations correspond to the instants of negative zero-crossing. The resulting GCI positions obtained
for the speech segment are indicated in the top of Fig.3.1(e). It is clearly noticed that the possible
ambiguity with the discontinuities around GOIs is removed by using the CoG-based signal.

3.2.2 The DYPSA algorithm

The Dynamic Programming Phase Slope Algorithm (DYPSA) [14] estimates GCIs by the identification
of peaks in the linear prediction residual of speech in a similar way to the HE method. It consists of
two main components: estimation of GCI candidates with the group delay function of the LP residual
and N -best dynamic programming. These components are defined as follows.

Group Delay Function

The group delay function is the average slope of the unwrapped phase spectrum of the short time Fourier
transform of the LP residual [28] [29]. It can be shown to accurately identify impulsive features in
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Figure 3.1 - Illustration of GCI detection using the Hilbert Envelope-based method on a segment of
voiced speech. (a): the speech signal, (b): the LP residual signal, (c): the Hilbert Envelope (HE) of
the LP residue, (d): the Center of Gravity-based signal computed from the HE, (e): the synchronized
differenced EGG with the GCI positions located by the HE-based method.

a function provided their minimum separation is known. GCI candidates are selected based on the
negative-going zero crossings of the group delay function. Consider an LP residual signal, e(n), and
an R-sample windowed segment xn(r) beginning at sample n:

xn(r) = w(r)e(n+ r) for r = 0, . . . , R− 1 (3.2)

where w(r) is a windowing function. The group delay of xn(r) is given by [28]:

τn(k) =
−d arg(Xn)

dω
= ℜ

(

X̃n(k)

Xn(k)

)

(3.3)

where Xn(k) is the Fourier transform of xn(r) and X̃n(k) is the Fourier transform of rxn(r). If xn(r) =
δ(r−r0), where δ(r) is a unit impulse function, it follows from Equation (3.3) that τn(k) ≡ r0∀k. In the
presence of noise, τn(k) becomes noisy, therefore an averaging procedure is performed over k. Different
approaches are reviewed in [29]. The Energy-Weighted Group Delay is defined as:

d(n) =

∑R−1
k=0 |Xn(k)|

2τn(k)
∑R−1

k=0 |Xn(k)|2
−

R− 1

2
. (3.4)

Manipulation yields the simplified expression:

d(n) =

∑R−1
r=0 rx2n(r)

∑R−1
r=0 x2n(r)

−
R− 1

2
(3.5)

which is an efficient time-domain formulation and can be viewed as a centre of gravity of xn(r), bounded
in the range [−(R− 1)/2, (R− 1)/2]. The location of the negative-going zero crossings of d(n) give an
accurate estimation of the location of a peak in a function.
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DETECTION OF GLOTTAL CLOSURE INSTANTS FROM SPEECH SIGNALS

It can be shown that the signal d(n) does not always produce a negative-going zero crossing when
an impulsive feature occurs in e(n). In such cases, it has been observed that d(n) consistently exhibits
local minima followed by local maxima in the vicinity of the impulsive feature [14]. A phase-slope
projection technique is therefore introduced to estimate the time of the impulsive feature by finding
the midpoint between local maxima and minima where no zero crossing is produced, then projecting
a line onto the time axis with negative unit slope.

Dynamic Programming

Erroneous GCI candidates are removed using known characteristics of voiced speech by minimising a
cost function so as to select a subset of the GCI candidates which most likely correspond to true GCIs.
The subset of candidates is selected according by minimising the following cost function:

min
Ω

|Ω|
∑

r=1

λ
T cΩ(r), (3.6)

where Ω is a subset with GCI candidates of size |Ω| selected to produce minimum cost, λ =
[λA λP λJ λF λS ]

T = [0.8 0.5 0.4 0.3 0.1]T is a vector of weighting factors, the choice of which is
described in [14], and c(r) = [cA(r) cP (r) cJ(r) cF (r) cS(r)]

T is a vector of cost elements evaluated at
the rth element of Ω. The cost vector elements are:

• Speech waveform similarity, cA(r), between neighbouring candidates, where candidates not cor-
related with the previous candidate are penalised.

• Pitch deviation, cP (r), between the current and the previous two candidates, where candidates
with large deviation are penalised.

• Projected candidate cost, cJ(r), for the candidates from the phase-slope projection, which often
arise from erroneous peaks.

• Normalised energy, cF (r), which penalises candidates that do not correspond to high energy in
the speech signal.

• Ideal phase-slope function deviation, cS(r), where candidates arising from zero-crossings with
gradients close to unity are favoured.

3.2.3 The Zero Frequency Resonator-based technique

The Zero Frequency Resonator-based (ZFR) technique relies on the observation that the impulsive
nature of the excitation at GCIs is reflected across all frequencies [20]. The GCI positions can be
detected by confining the analysis around a single frequency. More precisely, the method focuses
the analysis on the output of zero frequency resonators to guarantee that the influence of vocal-tract
resonances is minimal and, consequently, that the output of the zero frequency resonators is mainly
controlled by the excitation pulses. The zero frequency-filtered signal (denoted y(n) here below) is
obtained from the speech waveform s(n) by the following operations [20]:

1. Remove from the speech signal the dc or low-frequency bias during recording:

x(n) = s(n)− s(n− 1) (3.7)
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2. Pass this signal two times through an ideal zero-frequency resonator:

y1(n) = x(n) + 2 · y1(n− 1)− y1(n− 2) (3.8)

y2(n) = y1(n) + 2 · y2(n− 1)− y2(n− 2) (3.9)

The two passages are necessary for minimizing the influence of the vocal tract resonances in
y2(n).

3. As the resulting signal y2(n) is exponentially increasing or decreasing after this filtering, its trend
is removed by a mean-substraction operation:

y(n) = y2(n)−
1

2N + 1

N
∑

m=−N

y2(n+m) (3.10)

where the window length 2N + 1 was reported in [20] to be not very critical, as long as it is
in the range of about 1 to 2 times the average pitch period T̄0,mean of the considered speaker.
Accordingly, we used in this study a window whose length is 1.5·T̄0,mean. Note also that this
operation of mean removal has to be repeated three times in order to avoid any residual drift of
y(n).

An illustration of the resulting zero frequency-filtered signal is displayed in Fig. 3.2(b) for our
example. This signal is observed to possess two advantageous properties: 1) it oscillates at the local
pitch period, 2) the positive zero-crossings of this signal correspond to the GCI positions. This is
confirmed in Fig. 3.2(c), where a good agreement is noticed between the GCI locations identified by
the ZFR technique and the actual discontinuities in the synchronized dEGG.
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Figure 3.2 - Illustration of GCI detection using the Zero Frequency Resonator-based method on a
segment of voiced speech. (a): the speech signal, (b): the zero frequency-filtered signal, (c): the syn-
chronized dEGG with the GCI positions located by the ZFR-based method.
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3.2.4 The YAGA algorithm

The Yet Another GCI Algorithm (YAGA) [15], like DYPSA, is an LP-based approach that employs
N -best dynamic programming to find the best path through a set of candidate GCIs. The algorithms
differ in the way in which the candidate set is estimated. Candidates are derived in DYPSA using
a linear prediction residual, calculated by inverse-filtering a preemphasised speech signal with the
LP coefficients. GCIs are manifest as impulsive features that may be detected with the group delay
function. In YAGA, candidates are derived from an estimate of the voice source signal u′(n) by using
the same LP coefficients to inverse-filter the non-preemphasized speech signal. This differs crucially
in that it exhibits discontinuities at both GCIs and GOIs, although GOIs are not considered in this
chapter. The speech signal s(n) and voice source signal u′(n) are shown for a short speech sample in
Fig. 3.3 (a) and (b) respectively.
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Figure 3.3 - Illustration of GCI detection using the YAGA algorithm on a segment of voiced speech.
(a): the speech signal, (b): the corresponding voice source signal, (c): the multiscale product of the
voice source, (d): the group-delay function, (e): the synchronized dEGG with the GCI positions located
by the YAGA algorithm.

The impulsive nature of the LPC residual is well-suited to detection with the group delay method
as discussed in Section 3.2.2. In order for the group delay method to be applied to voice source
signal, a discontinuity detector that yields an impulse-like signal is required. Such a detector might be
achieved by a 1st-order differentiator, however it is known that GCIs and GOIs are not instantaneous
discontinuities but are instead spread over time [22]. The Stationary Wavelet Transform (SWT) is a
multiscale analysis tool for the detection of discontinuities in a signal by considering the product of the
signal at different scales [30]. It was first used in the context of GCI detection in [22] by application
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to the speech signal. YAGA employs a similar approach on the voice source signal, which is expected
to yield better results as it is free from unwanted vocal tract resonances. The SWT of signal u′(n),
1 ≤ n ≤ N at scale j is:

dsj(n) = W2ju
′(n),

=
∑

k

gj(k)a
s
j−1(n− k), (3.11)

where the maximum scale J is bounded by log2N and j = 1, 2, . . . , J − 1. The approximation coeffi-
cients are given by:

asj(n) =
∑

k

hj(k)a
s
j−1(n− k), (3.12)

where as0(n) = u′(n) and gj(k), hj(k) are detail and approximation filters respectively that are upsam-
pled by two on each iteration to effect a change of scale [30]. Filters are derived from a biorthogonal
spline wavelet with one vanishing moment [30]. The multiscale product, p(n), is formed by:

p(n) =

j1
∏

j=1

dj(n) =

j1
∏

j=1

W2ju
′(n), (3.13)

where it is assumed that the lowest scale to include is always 1. The de-noising effect of the approxima-
tion filters each scale in conjunction with the multiscale product means that p(n) is near-zero except
at discontinuities across the first j1 scales of u′(n) where it becomes impulse-like. The value of j1 is
bounded by J , but in practice j1 = 3 gives good localization of discontinuities in acoustic signals [31].

The multiscale product of the voice source signal in Fig. 3.3 (b) is shown in plot (c). Impulse-
like features can be seen in the vicinity of discontinuities of u′(n); such features are then detected
by the negative-going zero-crossings of the group delay function in plot (d) that form the candidate
set of GCIs. In order to distinguish between GCIs, GOIs and false candidates, an N -best dynamic
programming algorithm is applied. The cost function employed is similar to that of DYPSA with
an improved waveform similarity measure and an additional element to reliably differentiate between
GCIs and GOIs.

3.3 A New Method for GCI Detection: the SEDREAMS Algorithm

We here propose a new technique for automatically determining the GCI locations from the speech
signal: the Speech Event Detection using the Residual Excitation And a Mean-based Signal (SE-
DREAMS) algorithm. We have shown in [21] that it is a reliable and accurate method for locating
both GCIs and GOIs (although in a less accurate way) from the speech waveform. Since the present
study only focuses on GCIs, the determination of GOI locations by the SEDREAMS algorithm is omit-
ted. The two steps involved in this method are: i) the determination of short intervals where GCIs are
expected to occur and ii) the refinement of the GCI locations within these intervals. These two steps
are described in the following subsections. The SEDREAMS algorithm will then be compared in the
rest of this chapter to the four state-of-the-art methods presented in Section 3.2.

3.3.1 Determining intervals of presence using a mean-based signal

As highlighted by the ZFR technique [20], a discontinuity in the excitation is reflected over the whole
spectral band, including the zero frequency. Inspired by this observation, the analysis is focused on a
mean-based signal. Denoting the speech waveform as s(n), the mean-based signal y(n) is defined as:
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y(n) =
1

2N + 1

N
∑

m=−N

w(m)s(n+m) (3.14)

where w(m) is a windowing function of length 2N +1. While the choice of the window shape is not
critical (a typical Blackman window is used in this study), its length influences the time response of
this filtering operation, and may then affect the reliability of the method. The impact of the window
length on the misidentification rate is illustrated in Figure 3.4 for the female speaker SLT from the
CMU ARCTIC database [32]. Optimality is seen as a trade-off between two opposite effects. A too
short window causes the appearance of spurious extrema in the mean-based signal, giving birth to
false alarms. On the other hand, a too large window smooths it, affecting in this way the miss rate.
However we clearly observed for the three speakers a valley between 1.5 and 2 times the average pitch
period T0,mean. Throughout the rest of this thesis we used for SEDREAMS a window whose length is
1.75·T0,mean.
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Figure 3.4 - Effect of the window length used by SEDREAMS on the misidentification rate for the
speaker SLT, whose average pitch period is 5.7 ms.

A segment of voiced speech and its corresponding mean-based signal using an appropriate window
length are illustrated in Figs. 3.5(a) and 3.5(b). Interestingly it is observed that the mean-based
signal oscillates at the local pitch period. However the mean-based signal is not sufficient in itself for
accurately locating GCIs. Indeed, consider Fig. 3.6 where, for five different speakers, the distributions
of the actual GCI positions (extracted from synchronized EGG recordings) are displayed within a
normalized cycle of the mean-based signal. It turns out that GCIs may occur at a non-constant
relative position within the cycle. However, once minima and maxima of the mean-based signal are
located, it is straightforward to derive short intervals of presence where GCIs are expected to occur.
More precisely, as observed in Fig. 3.6, these intervals are defined as the timespan starting at the
minimum of the mean-based signal, and whose length is 0.35 times the local pitch period (i.e the
period between two consecutive minima). Such intervals are illustrated in Fig.3.5(c) for our example.

3.3.2 Refining GCI locations using the residual excitation

Intervals of presence obtained in the previous step give fuzzy short regions where a GCI should happen.
The goal of the next step is to refine, for each of these intervals, the precise location of the GCI occuring

34



3.3 A New Method for GCI Detection: the SEDREAMS Algorithm

140 160 180 200 220 240 260 280 300 320
−1

0

1

140 160 180 200 220 240 260 280 300 320
−1

0

1

140 160 180 200 220 240 260 280 300 320
0

0.5

1

140 160 180 200 220 240 260 280 300 320
−1

0

1

140 160 180 200 220 240 260 280 300 320
−0.2

0

0.2

0.4

Time (ms)

(a)

(b)

(c)

(d)

(e)

Figure 3.5 - Illustration of GCI detection using the SEDREAMS algorithm on a segment of voiced
speech. (a): the speech signal, (b): the mean-based signal, (c): intervals of presence derived from the
mean-based signal, (d): the LP residual signal, (e): the synchronized dEGG with the GCI positions
located by the SEDREAMS algorithm.
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Figure 3.6 - Distributions, for five speakers, of the actual GCI positions (plot (b)) within a normalized
cycle of the mean-based signal (plot (a)).

inside it. The LP residual is therefore inspected, assuming that the largest discontinuity of this signal
within a given interval corresponds to the GCI location.
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Figs. 3.5(d) and 3.5(e) show the LP residual and the time-aligned dEGG for our example. It is
clearly noted that combining the intervals extracted from the mean-based signal with a peak picking
method on the LP residue allows the accurate and unambiguous detection of GCIs (as indicated in
Fig.3.5(e)).

It is worth noting that the advantage of using the mean-based signal is two-fold. First of all, since
it oscillates at the local pitch period, this signal guarantees good performance in terms of reliability
(i.e the risk of misses or false alarms is limited). Secondly, the intervals of presence that are derived
from this signal imply that the GCI timing error is bounded by the depth of these intervals (i.e 0.35
times the local pitch period).

3.4 Assessment of GCI Extraction Techniques

3.4.1 Speech Material

The evaluation of the GCI detection methods relies on ground-truth obtained from EGG record-
ings. The methods are compared on six large corpora containing contemporaneous EGG recordings
whose description is summarized in Table 3.1. The first three corpora come from the CMU ARCTIC
databases [32]. They were collected at the Language Technologies Institute at Carnegie Mellon Univer-
sity with the goal of developing unit selection speech synthesizers. Each phonetically balanced dataset
contains 1150 sentences uttered by a single speaker: BDL (US male), JMK (US male) and SLT (US
female). The fourth corpus consists of a set of nonsense words containing all phone-phone transitions
for English, uttered by the UK male speaker RAB. The fifth corpus is the KED Timit database and
contains 453 utterances spoken by a US male speaker. These five first databases are freely available
on the Festvox webpage [32]. The sixth corpus is the APLAWD dataset [33] which contains ten rep-
etitions of five phonetically balanced English sentences spoken by each of five male and five female
talkers. For each of these six corpora, the speech and EGG signals sampled at 16 kHz are considered.
The APLAWD database contains a square wave calibration signal for correcting low-frequency phase
distortion, introduced in the recording chain, with an allpass equalization filter [34]. While this is
particularly important in the field of voice source estimation and modelling [35], we have found GCI
detection to be relatively insensitive to such phase distortion. An intuitive explanation is that the
glottal excitation at the GCI excites many high-frequency bins such that low-frequency distortion does
not have a significant effect upon the timing of the estimated GCI.

Dataset Speaker(s) Approximative duration
BDL 1 male 54 min.
JMK 1 male 55 min.
SLT 1 female 54 min.
RAB 1 male 29 min.
KED 1 male 20 min.

APLAWD 5 males - 5 females 20 min.

Total 9 males - 6 females 232 min.

Table 3.1 - Description of the databases.
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3.4 Assessment of GCI Extraction Techniques

3.4.2 Objective Evaluation

The most common way to assess the performance of GCI detection techniques is to compare the
estimates with the reference locations extracted from EGG signals (Section 3.4.2). Besides it is also
proposed to evaluate also their efficiency on a specific application of speech processing: the causal-
anticausal deconvolution (Section 3.4.2).

Comparison with Electroglottographic Signals

Electroglottography (EGG), also known as electrolaryngography, is a non-intrusive technique for mea-
suring the time-varying impedance between the vocal folds. The EGG signal is obtained by passing a
weak electrical current between a pair of electrodes placed in contact with the skin on both sides of
the larynx. This measure is proportionate to the contact area of the vocal folds. As clearly seen in the
explanatory figures of Section 3.2, true positions of GCIs can then be easily detected by locating the
greatest positive peaks in the differenced EGG signal. Note that, for the automatic assessment, EGG
signals need to be time-aligned with speech signals by compensating the delay between the EGG and
the microphone. This was done in this work by a manual verification for each database (inside which
the delay is assumed to remain constant).

Larynx cycle

Time

TimeIdentification Miss False alarmOutcome :

ξ

R
e

fe
re

n
ce

 G
C

Is
E

st
im

a
te

d
 G

C
Is

Figure 3.7 - Characterization of GCI estimates showing three glottal cycles with examples of each
possible outcome from GCI estimation [14]. Identification accuracy is characterized by ξ.

Performance of a GCI detection method can be evaluated by comparing the locations that are
estimated with the synchronized reference positions derived from the EGG recording. For this, we
here make use of the performance measure defined in [14], presented with the help of Fig. 3.7. The
first three measures describe how reliable the algorithm is in identifying GCIs:

• the Identification Rate (IDR): the proportion of glottal cycles for which exactly one GCI is
detected,

• the Miss Rate (MR): the proportion of glottal cycles for which no GCI is detected,

• and the False Alarm Rate (FAR): the proportion of glottal cycles for which more than one GCI
is detected.
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For each correct GCI detection (i.e respecting the IDR criterion), a timing error ξ is made with
reference to the EGG-derived GCI position. When analyzing a given dataset with a particular method
of GCI detection, ξ has a probability density comparable to the histograms of Fig. 3.10 (which will be
detailed later in this chapter). Such a distribution can be characterized by the following measures for
quantifying the accuracy of the method [14]:

• the Identification Accuracy (IDA): the standard deviation of the distribution,

• the Accuracy to ± 0.25 ms: the proportion of detections for which the timing error is smaller
than this bound.

A Speech Processing Application: the Causal-Anticausal Deconvolution

Causal-anticausal decomposition (also known as mixed-phase decomposition) is a non-parametric tech-
nique of source-tract deconvolution known to be highly sensitive to GCI location errors [9]. It can
therefore be employed as a framework for assessing our methods of GCI extraction on a speech pro-
cessing application. A complete study of the causal-anticausal decomposition is given in Chapter 5.
Nonetheless, we here provide a short background on this concept, necessary to the good understanding
of the results exhibited in Section 3.5.2.

The principle of the causal-anticausal decomposition relies on the mixed-phase model of speech
[36], [9]. According to this model, voiced speech is composed of both minimum-phase (i.e causal)
and maximum-phase (i.e anticausal) components. While the vocal tract response and the glottal
return phase can be considered as minimum-phase signals, it has been shown [36] that the glottal
open phase is a maximum-phase signal (see Section 5.2 for further explanations). The key idea of the
causal-anticausal (or mixed-phase) decomposition is then to separate both minimum and maximum-
phase components of speech, where the latter is only due to the glottal contribution. By isolating the
anticausal component of speech, causal-anticausal separation allows to estimate the glottal open phase.

It is emphasized in Section 5.4 that windowing is crucial and dramatically conditions the efficiency
of the causal-anticausal decomposition. It is indeed essential that the window applied to the segment
of voiced speech respects some constraints in order to exhibit correct mixed-phase properties. Among
these constraints, the window should be synchronized on a GCI, and have an appropriate shape and
length (proportional to the pitch period). If the windowing is such that the speech segment respects the
properties of the mixed-phase model, a correct deconvolution is achieved and the anticausal component
gives a reliable estimate of the glottal flow (i.e which corroborates the models of the glottal source,
such as the Liljencrants-Fant (LF) model [37]), as illustrated in Fig. 3.8(a). On the contrary, if this
is not the case (possibly due to the fact that the window is not perfectly synchronized with the GCI),
the causal-anticausal decomposition fails, and the resulting anticausal component generally contains
an irrelevant high-frequency noise (see Fig.3.8(b)).

As a simple (but accurate) criterion for deciding whether a frame has been correctly decomposed
or not, the spectral center of gravity of the anticausal component is investigated. For a given dataset,
this feature has a distribution as the one displayed in Fig. 3.9. A principal mode around 2 kHz clearly
emerges and corresponds to the majority of frames for which a correct decomposition is carried out (as
in Fig.3.8(a)). A second mode at higher frequencies is also observed. It is related to the frames where
the causal-anticausal decomposition fails, leading to a maximum-phase signal containing an irrelevant
high-frequency noise (as in Fig.3.8(b)). It can be noticed from this histogram that fixing a threshold
at around 2.7 kHz optimally discriminate frames that are correctly and incorrectly decomposed.

In conclusion, it is expected that the use of good GCI estimates reduces the proportion of frames
that are incorrectly decomposed using the causal-anticausal separation.
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Figure 3.8 - Two cycles of the anticausal component isolated by mixed-phase decomposition (a): when
the speech segment exhibits characteristics of the mixed-phase model, (b): when this is not the case.
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Figure 3.9 - Example of distribution for the spectral center of gravity of the maximum-phase com-
ponent. Fixing a threshold around 2.7kHz makes a good separation between correctly and incorrectly
decomposed frames.

3.5 Experiments on Clean Speech Data

Based on the experimental protocol described in Section 3.4, the performance of the four methods
of GCI detection introduced in Section 3.2 and the SEDREAMS algorithm (Section 3.3) are now
compared on the original clean speech utterances.

3.5.1 Comparison with Electroglottographic Signals

Results obtained from the comparison with electroglottographic recordings are presented in Table 3.2
for the various databases.

In terms of reliability performance, SEDREAMS and YAGA algorithms generally give the highest
identification rates. Among others, it turns out that SEDREAMS correctly identifies more than 98%
of GCIs for any dataset. This is also true for YAGA, except on the RAB database where it reaches
95.70%. Although the performance of ZFR is below these two techniques for JMK, RAB and KED
speakers, its results are rather similar on other datasets, obtaining even the best reliability scores on
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Accuracy
Database Method IDR (%) MR (%) FAR (%) IDA (ms) to ±0.25ms (%)

HE 97.04 1.93 1.03 0.58 46.24
DYPSA 95.54 2.12 2.34 0.42 83.74

BDL ZFR 97.97 1.05 0.98 0.30 80.93
SEDREAMS 98.08 0.77 1.15 0.31 89.35

YAGA 98.43 0.39 1.18 0.29 90.31
HE 93.01 3.94 3.05 0.90 38.66

DYPSA 98.26 0.88 0.86 0.46 77.26
JMK ZFR 96.17 3.43 0.4 0.60 41.62

SEDREAMS 99.29 0.25 0.46 0.42 80.78
YAGA 99.13 0.27 0.60 0.40 81.05

HE 96.16 2.83 1.01 0.56 52.46
DYPSA 97.18 1.41 1.41 0.44 72.17

SLT ZFR 99.26 0.15 0.59 0.22 83.70
SEDREAMS 99.15 0.12 0.73 0.30 81.35

YAGA 98.90 0.20 0.90 0.28 86.18
HE 92.08 2.55 5.37 0.78 38.67

DYPSA 82.33 1.87 15.80 0.46 86.76
RAB ZFR 92.94 6.31 0.75 0.56 55.87

SEDREAMS 98.87 0.63 0.50 0.37 91.26
YAGA 95.70 0.47 3.83 0.49 89.77

HE 94.73 1.75 3.52 0.56 65.81
DYPSA 97.24 1.56 1.20 0.34 89.46

KED ZFR 87.36 7.90 4.74 0.63 46.82
SEDREAMS 98.65 0.67 0.68 0.33 94.65

YAGA 98.21 0.63 1.16 0.34 95.14
HE 91.74 5.64 2.62 0.73 54.20

DYPSA 96.12 2.24 1.64 0.59 77.82
APLAWD ZFR 98.89 0.59 0.52 0.55 57.87

SEDREAMS 98.67 0.82 0.51 0.45 85.15
YAGA 98.88 0.52 0.60 0.49 85.51

Table 3.2 - Summary of the performance of the five methods of GCI estimation for the six databases.

SLT and APLAWD. As for the DYPSA method, its performance remains behind SEDREAMS and
YAGA, albeit it reaches IDRs comprised between 95.54% and 98.26%, except for the RAB speaker
where the technique fails, leading to an important amount of false alarms (15.80%). Finally the HE-
based approach is outperformed by all other methods most of the time. However it achieves on all
databases identification rates, comprised between 91.74% and 97.04%.

In terms of accuracy, it is observed on all the databases, except for the RAB speaker, that YAGA
leads the highest rates of frames for which the timing error is lower than 0.25 ms. The SEDREAMS
algorithm gives almost comparable accuracy performance, just below the accuracy of YAGA. The
DYPSA and HE algorithms, are outperformed by YAGA and SEDREAMS on all datasets. As it was
the case for the reliability results, the accuracy of ZFR strongly depends on the considered speaker. It
achieves very good results on the BDL and SLT speakers even though the overall accuracy is rather
low especially for the KED corpus.
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The accuracy performance is illustrated in Fig. 3.10 for the five measures. The distributions of
the GCI identification error ξ is averaged over all datasets. The histograms for the SEDREAMS and
YAGA methods are the sharpest and are highly similar. It is worth pointing out that some discrepancy
is expected even if the GCI methods identify the acoustic events with high accuracy, since the delay
between the speech signal, recorded by the microphone, and the EGG does not remain constant during
recordings.
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Figure 3.10 - Histograms of the GCI timing error averaged over all databases for the five compared
techniques.

In conclusion from the results of Table 3.2, the SEDREAMS and YAGA techniques, with highly
similar performance, generally outperform other methods of GCI detection on clean speech, both in
terms of reliability and accuracy. The ZFR method can also reach comparable (or even slightly better)
results for some databases, but its performance is observed to be strongly sensitive to the considered
speaker. In general, these three approaches are respectively followed by the DYPSA algorithm and the
HE-based method.

3.5.2 Performance based on Causal-Anticausal Deconvolution

As introduced in Section 3.4.2, the Causal-Anticausal deconvolution is a well-suited approach for
evaluating our techniques of GCI determination on a concrete application of speech processing. It
was indeed emphasized that this method of glottal flow estimation is highly sensitive to GCI location
errors. Besides we presented in Section 3.4.2 an objective spectral criterion for deciding whether the
mixed-phase separation fails or not. It is important to note at this point that the constraint of precise
GCI-synchronization is a necessary, but not sufficient, condition for having a correct deconvolution.

Figure 3.11 displays, for all databases and GCI estimation techniques, the proportion of speech
frames that are incorrectly decomposed via mixed-phase separation (achieved in this work by the
complex cepstrum-based algorithm [38]). It can be observed that for all datasets (except for SLT),
SEDREAMS and YAGA outperform other approaches and lead again to almost the same results.
They are closely followed by the DYPSA algorithm whose accuracy was also shown to be quite high
in the previous section. The ZFR method turns out to be generally outperformed by these three
latter techniques, but still gives the best results on the SLT voice. Finally, it is seen that the HE-
based approach leads to the highest rates of incorrectly decomposed frames. Interestingly, these results
achieved in the applicative context of the mixed-phase deconvolution corroborate the conclusions drawn
from the comparison with EGG signals, especially regarding their accuracy to ±0.25 ms (see Section
3.5.1). This means that the choice of an efficient technique of GCI estimation, as those compared in
this work, may significantly improve the performance of applications of speech processing for which a
pitch-synchronous analysis or synthesis is required.
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Figure 3.11 - Proportion of speech frames leading to an incorrect mixed-phase deconvolution using all
GCI estimation techniques on all databases.

3.6 Robustness of GCI Extraction Methods

In some speech processing applications, such as speech synthesis, utterances are recorded in well con-
trolled conditions. For such high-quality speech signals, the performance of GCI estimation techniques
was studied in Section 3.5. For many other types of speech processing systems however, there is no
other choice than capturing the speech signal in a real world environment, where noise and/or reverber-
ation may dramatically degrade its quality. The goal of this section is to evaluate how GCI detection
methods are affected by additive noise (Section 3.6.1) and by reverberation (Section 3.6.2). Note that
results presented here below were averaged over the six databases.

3.6.1 Robustness to an Additive Noise

In a first experiment, noise was added to the original speech waveform at various Signal-to-Noise Ratio
(SNR). Both a White Gaussian Noise (WGN) and a babble noise (also known as cocktail party noise)
were considered. The noise signals were taken from the Noisex-92 database [39], and were added so as
to control the segmental SNR without silence removal. Results for these two noise types are exhibited
in Figs. 3.12 and 3.13 according to the measures detailed in Section 3.4.2. In these figures, miss rate
and false alarm rate are in logarithmic scale for the sake of clarity. It is observed that, for both noise
types, the general trends remain unchanged. However it turns out that the degradation of reliability
is more severe with the white noise, while the accuracy is more affected by the babble noise.

Figure 3.12 - Robustness of GCI estimation methods to an additive white noise, according to the five
measures of performance. Miss rate and false alarm rate are in logarithmic scale.
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Figure 3.13 - Robustness of GCI estimation methods to an additive babble noise, according to the five
measures of performance. Miss rate and false alarm rate are in logarithmic scale.

In terms of reliability, it is noticed that SEDREAMS and ZFR lead to the best robustness, since
their performance is almost unchanged up to 0dB of SNR. Secondly, the degradation for YAGA and
HE is almost equivalent, while it is noticed that DYPSA is strongly affected by additive noise. Among
others, it is observed that HE is characterized by an increasing miss rate as the noise level increases,
while the degradation is reflected by an increasing number of false alarms for DYPSA, and for YAGA
in a lesser extent. This latter observation is probably due to the difficulty of the dynamic programing
process to deal with spurious GCI candidates caused by the additive noise.

Regarding the accuracy capabilities, similar conclusions hold. Nevertheless the sensitivity of SE-
DREAMS is this time comparable to that of YAGA and HE. Again, the ZFR algorithm is found to
be the most robust technique, while DYPSA is the one presenting the strongest degradation and HE
displays the worst identification accuracy.

The good robustness of ZFR and SEDREAMS can be explained by the low sensitivity of respectively
the zero-frequency resonators and the mean-based signal to an additive noise. In the case of ZFR,
analysis is confined around 0 Hz, which tends to minimize not only the effect of the vocal tract, but
of an additive noise as well. As for SEDREAMS, the mean-based signal is computed as in Equation
3.14, which is a linear relation. In other words, the mean-based signal of the noise is added to the
mean-based signal of the speech signal. On a duration of 1.75·T̄0,mean, the white noise is assumed to be
almost zero-mean. A similar conclusion is observed for the babble noise, which is composed of several
sources of speech talking at the same time. It can indeed be understood that the higher the number
of sources in the babble noise, the lesser its degradation on the target mean-based signal. Finally, the
strong sensitivity of DYPSA and YAGA might be explained, among others, by the fact that they rely
on some thresholds, which have been optimized for clean speech.

3.6.2 Robustness to Reverberation

In many modern telecommunication applications, speech signals are obtained in enclosed spaces with
the talker situated at a distance from the microphone. The received speech signal is distorted by
reverberation, caused by reflected signals from walls and hard objects, diminishing intelligibility and
perceived speech quality [40, 41]. It has been further observed that the performance of GCI identifica-
tion algorithms is degraded when applied to reverberant signals [4].

The observation of reverberant speech at microphone m is:

xm(n) = hm(n) ∗ s(n), m = 1, 2, . . . ,M, (3.15)

where hm(n) is the L-tap Room Impulse Response (RIR) of the acoustic channel between the source
to the mth microphone. It has been shown that multiple time-aligned observations with a microphone
array can be exploited for GCI estimation in reverberant environments [17]; in this chapter we only
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consider the robustness of single-channel algorithms to the observation at channel x1(n). RIRs are
characterised by the value T60, defined as the time for the amplitude of the RIR to decay to -60dB of
its initial value. A room measuring 3x4x5 m and T60 ranging {100, 200, . . . , 500} ms was simulated
using the source-image method [42] and the simulated impulse responses convolved with the clean
speech signals described in Section 3.4.

Figure 3.14 - Robustness of GCI estimation methods to reverberation, according to the five measures
of performance. Miss rate and false alarm rate are in logarithmic scale.

The results in Figure 3.14 show that the performance of the algorithms monotonically reduces with
increasing reverberation, with the most significant change in performance occurring between T60 = 100
and 200 ms. They also reveal that reverberation has a particularly detrimental effect upon identification
rate of the LP-based approaches, namely HE, DYPSA and YAGA. This is consistent with previous
studies which have shown that the RIR results in additional spurious peaks in the LP residual of
similar amplitude to the voiced excitation [43, 44], generally increasing false alarm rate for DYPSA
and YAGA but increasing miss rate for HE. Although spurious peaks result in increased false alarms,
the identification accuracy of the hits is much less affected. The non-LP approaches generally exhibit
better identification rates in reverberation, in particular SEDREAMS. The ZFR algorithm appears
to be the least sensitive to reverberation while providing the best overall performance. However, the
challenge of GCI detection from single-channel reverberant observations remains an ongoing research
problem as no single algorithm consistently provides good results for all five measures.

3.7 Computational Complexity of GCI Extraction Methods

In the previous sections, methods of GCI estimation have been compared according to their reliability
and accuracy both in clean conditions (Section 3.5) and noisy/reverberant environments (Section 3.6).
In order to provide a complete comparison, an investigation into computational complexity is described
in this section. The techniques described in Section 3.2, as well as the SEDREAMS algorithm proposed
in Section 3.3, are relatively complex and their computational complexity is highly data-dependent; it
is therefore difficult to find a closed-form expression for computational complexity. In this section we
discuss those components that present a high computational load and provide a quantitative analysis
based upon empirical measurements.

For HE, ZFR and SEDREAMS, the most time-consuming step is the computation of the oscillating
signal which they rely on. For the HE method, the CoG-based signal is computed from Equation
3.1 and requires, for each sample, around 2.2 · Fs/T̄0,mean multiplications and the same number of
additions. For ZFR, the mean removal operation (Equation 3.10) is repeated three times, and thus
requires about 4.5 · Fs/T̄0,mean additions for each sample of the zero frequency-filtered signal. As for
the SEDREAMS algorithm, the computation of each sample of the mean-based signal (Equation 3.14)
requires 1.75 · Fs/T̄0,mean multiplications and the same number of additions.
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However, it is worth emphasizing that the computation time requested by HE and SEDREAMS can
be significantly reduced. Indeed these methods only exploit some particular points of the oscillating
signal which they rely on: the negative zero-crossings for HE, and the extrema for SEDREAMS. It
is then not necessary to compute all the samples of these signals for finding these particular events.
Based on this idea, a multiscale approach can be used. For example, the oscillating signals can be first
calculated only for the samples multiple of 2p. From this downsampled signal, a first approximation of
the particular points is obtained. This approximation is then refined iteratively using the p successive
smaller scales. The lower bounding value of p means there are, for the first approximation, at least
two samples per cycle. In the following, we used p = 4 so that voices with pitch up to 570 Hz can be
processed. The resulting methods are hereafter called Fast HE and Fast SEDREAMS. Notice that a
similar acceleration cannot be transposed to ZFR as the operation of mean removal is applied 3 times
successively.

In the case of DYPSA and YAGA, the signal conditioning stages present a relatively low compu-
tational load. The LPC residual, Group Delay Function and Multiscale Product scale approximately
O(N2), O(N log2N) and O(N) respectively, where N is the total number of samples in the speech
signal. Computational load is significantly heavier in the dynamic programming stages due to the large
number of erroneous GCI candidates that must be removed. In particular, the waveform similarity
measure, used to determine the similarity of two neighbouring cycles, presents a high computational
load due to the large number of executions required to find the optimum path. At present this is
calculated on full-band speech although it is expected that calculation of waveform similarity on a
downsampled signal may yield similar results for a much-reduced computational load. A second op-
timization lies in the length of the group delay evaluation window, which is inversely proportional to
the number of candidates generated. At present this takes a fixed value based upon the maximum
expected F0; far fewer erroneous candidates could be generated by dynamically varying the length
based upon a crude initial estimate of F0.

So as to compare their computational complexity, the Relative Computation Time (RCT) of each
GCI estimation method is evaluated on all databases:

RCT (%) = 100 ·
CPU time (s)

Sound duration (s)
(3.16)

Table 3.3 shows, for both male and female speakers, the averaged RCT obtained for our Matlab
implementations and with a Intel Core 2 Duo T7500 2.20 GHz CPU with 3GB of RAM. First of all,
it is observed that results are ostensibly the same for both genders. Regarding the non-accelerated
versions of the GCI detection methods, it turns out that DYPSA is the fastest (with a RCT around
20%), followed by SEDREAMS and YAGA, which both have a RCT of about 28%. The HE-based
technique gives a RCT of around 33%, and ZFR, due to its operation of mean removal which has to
be repeated three times, is the slowest method with a RCT of 75%. Interestingly, it is noticed that the
accelerated versions of HE and SEDREAMS reduce the computation time by about 5 times on male
voices, and by around 4 times for female speakers. This leads to the fastest GCI detection algorithms,
reaching a RCT of around 6% for Fast SEDREAMS, and about 8% for Fast HE. Note finally that
these results could be highly reduced by using, for example, a C-implementation of these techniques,
albeit the conclusions remain identical.

3.8 Conclusion

This chapter proposed a new procedure, called the Speech Event Detection using the Residual Excita-
tion And a Mean-based Signal (SEDREAMS) algorithm, for detecting the GCIs directly from speech
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Method Male Female

HE 35.0 31.8
Fast HE 7.6 7.8
DYPSA 19.9 19.4

ZFR 75.7 74.9
SEDREAMS 27.8 27.1

Fast SEDREAMS 5.4 6.9
YAGA 28.6 28.3

Table 3.3 - Relative Computation Time (RCT), in %, for all methods and for male and female
speakers. Results have been averaged across all databases.

signals. The procedure was divided into two successive steps. The first one computed a mean-based
signal and extracted from it intervals where speech events were expected to occur. This step guar-
anteed good performance in terms of identification rate. The second one refined the location of the
speech events within the intervals by inspecting the LP residual, which ensured good performance in
terms of identification accuracy.

A major contribution of this chapter was also the comparative evaluation of SEDREAMS with
four of the most effective methods for automatically determining GCIs from the speech waveform:
Hilbert Envelope-based detection (HE), the Zero Frequency Resonator-based method (ZFR), DYPSA
and YAGA. The performance of these methods was assessed on six databases containing several male
and female speakers, for a total amount of data of approximately four hours. In our first experiments
on clean speech, the SEDREAMS and YAGA algorithms gave the best results, with a comparable
performance. For any database, they reached an identification rate greater than 98% and more than
80% of GCIs were located with an accuracy of 0.25 ms. Although the ZFR technique can lead to
a similar performance, its efficiency can also be rather low in some cases. In general, these three
approaches were shown to respectively outperform DYPSA and HE. In a second experiment on clean
speech, the impact of the performance of these five methods was studied on a concrete application of
speech processing: the causal-anticausal deconvolution. Results showed that adopting a GCI detection
with high performance could significantly improve the proportion of correctly deconvolved frames. In
the last experiment, the robustness of the five techniques to additive noise, as well as to reverberation
was investigated. The ZFR and SEDREAMS algorithms were shown to have the highest robustness,
with an almost unchanged reliability. DYPSA was observed to be especially affected, which was
reflected by a high rate of false alarms. Although the degradation of accuracy was relatively slow
with the level of additive noise, it was noticed that reverberation dramatically affects the precision
GCI detection methods. In addition, the computational complexity of the algorithms was studied. A
method for accelerating the GCI location using HE and SEDREAMS was proposed. This led, for our
Matlab implementation, to a computation time about 6% real-time for the fast version of SEDREAMS.

Depending on the speech application to design, some GCI methods could be preferred to some
others, based on their performance for the criteria studied in this chapter. However, if the application
is placed in an unknown environment, we suggest the use of SEDREAMS for the following reasons: i)
it gave the best results with YAGA on clean speech, ii) it was the best performing technique in noisy
conditions, iii) it led with ZFR to the best robustness in a reverberant environment, and iv) it was
the most suited method for a real-time implementation.

Finally note that we made the SEDREAMS algorithm freely available on the web at:
http://tcts.fpms.ac.be/∼drugman/.
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Chapter 4

Introduction on the Glottal Flow

Estimation
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4.1 Glottal Flow Estimation: Problem Positioning

During the mechanism of phonation, an airflow is evicted from the lungs, arises in the trachea and
is modulated by its passage through the space delimited by the vocal folds, called the glottis [1].
Speech then results from filtering this so-called glottal flow by the vocal tract cavities, and converting
the resulting velocity flow into pressure at the lips [1]. In many speech processing applications, it is
important to separate the contributions from the glottis and the vocal tract. Achieving such a source-
filter deconvolution could lead to a distinct characterization and modeling of these two components,
as well as to a better understanding of the human phonation process. Such a decomposition is thus a
preliminary condition for the study of glottal-based vocal effects, which can be segmental (as for vocal
fry), or be controlled by speakers on a separate, supra-segmental layer. Their dynamics is very different
from that of the vocal tract contribution, and requires further investigation. Glottal source estimation
is then a fundamental problem in speech processing, finding applications in speech synthesis [2], voice
pathology detection [3], speaker recognition [4], emotive speech analysis/synthesis [5], etc.

Glottal flow estimation mainly refers to the estimation of the voiced excitation of the vocal tract.
During the production of voiced sounds, the airflow arising from the trachea causes a quasi-periodic
vibration of the vocal folds [1], organized into so-called opening/closure cycles. During the open phase,
vocal folds are progressively displaced from their initial state due to the increasing subglottal pressure.
When the elastic displacement limit is reached, they suddenly return to this position during the so-
called return phase. Figure 4.1 displays the typical shape of one cycle of the glottal flow (Fig.4.1(a))
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and its time derivative (Fig.4.1(b)) according to the Liljencrants-Fant (LF) model [6]. It is often
preferred to gather the lip radiation effect (whose action is close to a differentiation operator) with the
glottal component, and work in this way with the glottal flow derivative on the one hand, and with the
vocal tract contribution on the other hand. It is seen in Figure 4.1 (bottom plot) that the boundary
between open and return phases corresponds to a particular event called the Glottal Closure Instant
(GCI). GCIs refer to the instants of significant excitation of the vocal tract [7]. Being able to determine
their location, as done in Chapter 3, is of particular importance in so-called pitch-synchronous speech
processing techniques, and in particular for a more accurate separation between vocal tract and glottal
contributions.

Figure 4.1 - Typical waveforms, according to the Liljencrants-Fant (LF) model, of one cycle of: (top)
the glottal flow, (bottom) the glottal flow derivative. The various phases of the glottal cycle, as well as
the Glottal Closure Instant (GCI) are also indicated.

Several models of the glottal flow have been proposed in the literature. Almost all works devoted to
glottal flow modeling are expressed in the time domain. These are, for example, the Klatt [8], the R++
[9], the Rosenberg C [10] or the well-known LF model [6]. These models differ by the analytic expression
they use for fitting the glottal waveform, whose shape is in any case close to the one illustrated in Figure
4.1 for the LF model. This latter model makes use of two parameters for describing the glottal open
phase: i) the Open Quotient Oq which is the ratio between the open phase duration and the pitch
period, and ii) the asymmetry coefficient αm which is the ratio between the durations of the opening
phase and the open phase. As for the return phase, it is generally characterized by its time constant.
In contrast, the Causal-Anticausal Linear Model (CALM) proposed in [11] describes glottal signal in
the frequency domain.

The glottal flow models and their spectra are compared in [12]. The glottal flow derivative has a
magnitude spectrum as illustrated in Figure 4.2. This spectrum is characterized by a low-frequency
resonance called glottal formant, which is due to the glottal open phase. After the glottal formant
frequency, the spectrum of the glottal flow derivative goes down with an asymptotic behaviour of -
20dB/decade (or -6dB/octave). The glottal return phase then plays on what is called the spectral tilt
which makes this asymptotic slope, after a given cut-off frequency (related to the return phase time
constant) more severe (to -40dB/decade).

In Part II, we limit our scope to methods which perform an estimation of the glottal source
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Figure 4.2 - A typical magnitude spectrum of the glottal flow derivative. Left plot: in linear frequency
scale, right plot: in logarithmic frequency scale. The resonance is called glottal formant.

contribution directly from the speech waveform. Although some devices such as electroglottographs
or laryngographs, which measure the impedance between the vocal folds (but not the glottal flow
itself), are informative about the glottal behaviour [13], in most cases the use of such aparatus is
inconvenient and only the speech signal is available for analysis. This problem is then a typical case
of blind separation, since neither the vocal tract nor the glottal contribution are observable. This also
implies that no quantitative assessment of the performance of glottal source estimation techniques is
possible on natural speech, as no target reference signal is available.

In order to provide a necessary background for Part II, Sections 4.2 and 4.3 present a brief overview
of the existing methods for respectively estimating and parameterizing the glottal source. Section 4.4
then describes the structure of Part II and highlights its main contributions.

4.2 Methods for Glottal Source Estimation

The main techniques for estimating the glottal source directly from the speech waveform are here
reviewed. Relying on the speech signal alone, as it is generally the case in real applications, allows
to avoid the use of intrusive (e.g video camera at the vocal folds) or inconvenient (e.g. laryngograph)
device.

Such techniques can be separated into two classes, according to the way they perform the source-
filter separation. The first category (Section 4.2.1) is based on inverse filtering, while the second one
(Section 4.2.2) relies on the mixed-phase properties of speech.

4.2.1 Methods based on Inverse Filtering

Most glottal source estimation techniques are based on an inverse filtering process. These methods
first estimate a parametric model of the vocal tract, and then obtain the glottal flow by removing the
vocal tract contribution via inverse filtering. Methods in this category differ by the way the vocal
tract is estimated. Some perform the estimation by focusing the analysis during the glottal closed
phase, while others make use of an iterative and/or adaptive procedure. A more extended review of
the inverse filtering-based process for glottal waveform analysis can be found in [14].

Closed Phase Inverse Filtering

Closed phase refers to the timespan during which the glottis is closed (see Figure 4.1). During this
period, the effects of the subglottal cavities are minimized, providing a better way for estimating the
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vocal tract transfer function. Therefore, methods based on a Closed Phase Inverse Filtering (CPIF)
estimate a parametric model of the spectral envelope, computed during the estimated closed phase
duration [15]. The main drawback of these techniques lies in the difficulty in obtaining an accurate
determination of the closed phase. Several approaches have been proposed in the literature to solve
this problem. In [16], authors use information from the electroglottographic signal (which is avoided in
this study) to identify the period during which the glottis is closed. In [4], it was proposed to determine
the closed phase by analyzing the formant frequency modulation between open and closed phases. In
[17], the robustness of CPIF to the frame position was improved by imposing some dc gain constraints.
Besides this problem of accurate determination of the closed phase, it may happen that this period is
so short (for high-pitched voices) that not enough samples are available for a reliable filter estimation.
It was therefore proposed in [18] to perform multicycle closed-phase LPC, where a small number of
neighbouring glottal cycles are considered in order to have enough data for an accurate vocal tract
estimation. Finally note that an approach allowing non-zero glottal wave to exist over closed glottal
phases was proposed in [19].

Iterative and/or Adaptive Inverse Filtering

Some methods are based on iterative and/or adaptive procedures in order to improve the quality of
the glottal flow estimation. In [20], Fu and Murphy proposed to integrate, within the AutoRegressive
eXogenous (ARX) model of speech production, the LF model of the glottal source. The resulting
ARXLF model is estimated via an adaptive and iterative optimization [21]. Both source and filter
parameters are consequently jointly estimated. The method proposed by Moore in [22] iteratively
finds the best candidate for a glottal waveform estimate within a speech frame, without requiring a
precise location of the GCIs. Finally a popular approach was proposed by Alku in [23] and called
Iterative Adaptive Inverse Filtering (IAIF). This method is based on an iterative refinement of both
the vocal tract and the glottal components. In [24], the same authors proposed an improvement, in
which the LPC analysis is replaced by the Discrete All Pole (DAP) modeling technique [25], shown to
be more accurate for high-pitched voices.

4.2.2 Mixed-Phase Decomposition

A completely different category of glottal flow estimation methods relies on the mixed-phase model
of speech [26]. According to this model, speech is composed of both minimum-phase (i.e causal) and
maximum-phase (i.e anticausal) components. While the vocal tract impulse response and the return
phase of the glottal component can be considered as minimum-phase signals, it has been shown in
[11] that the open phase of the glottal flow is a maximum-phase signal. Besides it has been shown in
[27] that mixed-phase models are appropriate for modeling voiced speech due to the maximum-phase
nature of the glottal excitation. In [27] Garner et al. showed that the use of an anticausal all-pole filter
for the glottal pulse is necessary to resolve magnitude and phase information correctly. The key idea of
mixed-phase decomposition methods is then to separate minimum from maximum-phase components
of speech, where the latter is only due to the glottal contribution. In [28], Bozkurt et al. presented an
algorithm based on the Zeros of the Z-Transform (ZZT) to carry out this deconvolution. In Chapter
5, we will focus on the mixed-phase decomposition and propose a method using Complex Cesptrum
(CC) which is functionally equivalent to ZZT, but is strongly advantageous in terms of computation
time.

56



4.3 Glottal Source Parametrization

4.3 Glottal Source Parametrization

Once the glottal signal has been estimated by any of the aforementioned algorithms, it is interesting
to derive a parametric representation of it, using a small number of features. Various approaches, both
in the time and frequency domains, have been proposed to characterize the human voice source. This
section gives a brief overview of the most commonly used parameters in the literature, since some of
them are used throughout Part II. Some of these features are defined with the help of Figure 4.3. Note
that two recent PhD theses have addressed the estimation of glottal parameters from the speech signal
[29], [30].

t=0 t=T0t=T1 t=T2

Amax

Amid

Amin

t=0 t=T0

0

Dmin

t=Tct=Tz   t=Tz

Figure 4.3 - Particular instants and amplitudes of: (left) the glottal flow, (right) the glottal flow
derivative. Amplitude Amid is defined as Amid = Amid+Amin

2 ).

4.3.1 Time-domain features

Several time-domain features can be expressed as a function of time intervals derived from the glottal
waveform [31]. These are used to characterize the shape of the waveform, by capturing for example
the location of the primary or secondary opening instant [32], of the glottal flow maximum, etc.
The formulation of the source signal in the commonly used LF model [6] is based on time-domain
parameters, such as the Open Quotient Oq = Tc

T0
, the Asymmetry coefficient αm = Tz

Tc
, or the Voice

Speed Quotient Sq = Tz

Tc−Tz
[12]. However in most cases these instants are difficult to locate with

precision from the glottal flow estimation. Avoiding this problem and preferred to the traditional
Open Quotient, the Quasi-Open Quotient (QOQ) was proposed as a parameter describing the relative
open time of the glottis [33]. It is defined as the ratio between the quasi-open time and the quasi-closed
time of the glottis, and corresponds to the timespan (normalized to the pitch period) during which the
glottal flow is above 50% of the difference between the maximum and minimum flow (QOQ = T2−T1

T0
).

Note that QOQ was used in [32] for studying the physical variations of the glottal source related to
the vocal expression of stress and emotion. In [34] several variants of Oq have been tested in terms of
the degree by which they reflect phonation changes. QOQ was found to be the best for this task.

Another set of parameters is extracted from the amplitude of peaks in the glottal pulse or its
derivative [35]. The Normalized Amplitude Quotient (NAQ) proposed by Alku in [36] turns out to
be an essential glottal feature. NAQ is a parameter characterizing the glottal closing phase [36]. It
is defined as the ratio between the maximum of the glottal flow and the minimum of its derivative,
normalized with respect to the fundamental period (NAQ = Amax−Amin

Dmin·T0
). Its robustness and efficiency

to separate different types of phonation was shown in [36], [34]. Note that a quasi-similar feature,
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called basic shape parameter, was proposed by Fant in [37], where it was qualified as "most effective
single measure for describing voice qualities".

In [4], authors propose to use 7 LF parameters and 5 energy coefficients (defined in 5 subsegments
of the glottal cycle) respectively for characterizing the coarse and fine structures of the glottal flow
estimate. Finally some approaches aim at fitting a model on the glottal flow estimate by computing a
distance in the time domain [4], [38].

4.3.2 Frequency-domain features

As mentioned in Section 4.1, the spectrum of the LF model presents a low-frequency resonance called
the glottal formant [12]. Some approaches characterize the glottal formant both in terms of frequency
and bandwidth [39]. By defining a spectral error measure, other studies try to match a model to the
glottal flow estimation [40], [37], [38]. This is also the case for the Parabolic Spectrum Parameter
(PSP) proposed in [41].

An extensively used measure is the H1−H2 parameter [37]. This parameter is defined as the ratio
between the amplitudes of the magnitude spectrum of the glottal source at the fundamental frequency
and at the second harmonic [8], [42]. It has been widely used as a measure characterizing voice quality
[43], [37], [17].

For quantifying the amount of harmonics in the glottal source, the Harmonic to Noise Ratio (HNR)
and the Harmonic Richness Factor (HRF) have been proposed in [44] and [45]. More precisely, HRF
quantifies the amount of harmonics in the magnitude spectrum of the glottal source. It is defined
as the ratio between the sum of the amplitudes of harmonics, and the amplitude at the fundamental
frequency [46]. It was shown to be informative about the phonation type in [45] and [17].

4.4 Structure and Contributions of Part II

The remaining of Part II is structured as follows. Chapter 5 explains the principle of the mixed-
phase decomposition of speech and proposes a new algorithm for achieving it. This method is based
on the Complex Cepstrum and it is shown in Chapter 5 that it can efficiently be used for glottal
flow estimation. Chapter 6 provides a comparative evaluation of glottal flow estimation methods. The
performance of the Complex Cepstrum-based technique is assessed and compared to approaches relying
on inverse filtering. In Chapter 7, we suggest to use a chirp z-transform for methods achieving the
mixed-phase decomposition. An automatic way of carrying it out is proposed for both the Zeros of the
Z-Transform technique, as well as the Complex Cepstrum-based method. The advantage of the chirp
approach is that it removes the constraint of being synchronous on a Glottal Closure Instant. The
resulting method is then evaluated with regard to its traditional non-chirp equivalent.

The two next chapters focus on the applicability of the methods of glottal flow estimation in two
specific fields of speech processing. First, Chapter 8 investigates the use of glottal-based features for
the automatic detection of voice disorders. The second application concerns the analysis of expressive
speech and is detailed in Chapter 9.
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MIXED-PHASE DECOMPOSITION OF SPEECH USING COMPLEX CEPSTRUM

Abstract

This chapter investigates the possibility of using complex cepstrum for glottal flow esti-
mation. Via a systematic study of the windowing effects on the deconvolution quality,
we show that the complex cepstrum causal-anticausal decomposition can be effectively
used for glottal flow estimation when specific windowing criteria are met. It is also shown
that this complex cepstral decomposition gives similar glottal estimates as obtained with
the Zeros of the Z-Transform (ZZT) technique, but uses operations based on the Fast
Fourier Transform (FFT) instead of requiring the factoring of high-degree polynomials.
The resulting method is consequently much faster for achieving the same decomposition
quality. Finally in our tests on a large corpus of real expressive speech, we show that the
proposed method has the potential to be used for voice quality analysis.

This chapter is based upon the following publications:

• Thomas Drugman, Baris Bozkurt, Thierry Dutoit, Complex Cepstrum-based Decomposition of
Speech for Glottal Source Estimation, Interspeech Conference, Brighton, United Kingdom, 2009.

• Thomas Drugman, Baris Bozkurt, Thierry Dutoit, Causal-Anticausal Decomposition of Speech
using Complex Cepstrum for Glottal Source Estimation, Speech Communication, Volume 53,
Issue 6, July 2011, Pages 855-866, 2011.

Many thanks to Dr. Baris Bozkurt (Izmir Institute of Technology) for his helpful guidance.
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5.1 Introduction

5.1 Introduction

As mentioned in Chapter 4, glottal source estimation aims at isolating the glottal flow contribution
directly from the speech waveform. For this, most of the methods proposed in the literature are
based on an inverse filtering process (see Section 4.2.1). These methods first estimate a parametric
model of the vocal tract, and then obtain the glottal flow by removing the vocal tract contribution
via inverse filtering. The methods in this category differ by the way the vocal tract is estimated. In
some approaches [1], [2], this estimation is computed during the glottal closed phase, as the effects
of the subglottal cavities are minimized during this period, providing a better way for estimating the
vocal tract transfer function. Some other methods (such as [3]) are based on iterative and/or adaptive
procedures in order to improve the quality of the glottal flow estimation.

In this chapter we consider a non-parametric decomposition of the speech signal based on the
mixed-phase model [4],[5]. According to this model, speech contains a maximum-phase (i.e anticausal)
component corresponding to the glottal open phase. In [6], Bozkurt et al. proposed an algorithm
based on the Zeros of the Z-Transform (ZTT) which has the ability to achieve such a deconvolution.
However, the ZZT method suffers from high computational load due to the necessity of factorizing
large degree polynomials. It has also been discussed in previous studies that the complex cepstrum
had the potential to be used for excitation analysis ([7],[8]) but no technique is yet available for reliable
glottal flow estimation. This chapter discusses a complex cepstrum-based method that performs the
same operation as the ZZT (i.e. the estimation of the glottal open phase from the speech signal) in a
much faster way.

The goal of this chapter is two-fold. First we explain in which conditions complex cepstrum can
be used for glottal source estimation. The link with the ZZT-based technique is emphasized and
both methods are shown to be two means of achieving the same operation: the causal-anticausal
decomposition. However it is shown that the complex cepstrum performs it in a much faster way.
Secondly the effects of windowing are studied in a systematic framework. This leads to a set of
constraints on the window so that the resulting windowed speech segment exhibits properties described
by the mixed-phase model of speech. It should be emphasized that no method is here proposed for
estimating the return phase component of the glottal flow signal. As the glottal return phase has a
causal character [5], its contribution is mixed in the also causal vocal tract filter contribution of the
speech signal.

The chapter is structured as follows. Section 5.2 presents the theoretical framework for the causal-
anticausal decomposition of voiced speech signals. Two algorithms achieving this deconvolution, namely
the Zeros of the Z-Transform (ZZT) and the Complex Cepstrum (CC) based techniques, are described
in Section 5.3. The influence of windowing on the causal-anticausal decomposition is investigated in
Section 5.4 by a systematic study on synthetic signals. Relying on the conclusions of this study, it is
shown in Section 5.5 that the complex cepstrum can be efficiently used for glottal source estimation on
real speech. Among others we demonstrate the potential of this method for voice quality analysis on
an expressive speech corpus. Finally Section 5.6 concludes and summarizes the contributions of this
chapter.

5.2 Causal-Anticausal Decomposition of Voiced Speech

5.2.1 Mixed-Phase Model of Voiced Speech

It is generally accepted that voiced speech results from the excitation of a linear time-invariant system
with impulse response h(n), by a periodic pulse train p(n) [8]:
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MIXED-PHASE DECOMPOSITION OF SPEECH USING COMPLEX CEPSTRUM

x(n) = p(n) ⋆ h(n), (5.1)

where ⋆ denotes the convolution operation. According to the mechanism of voice production, speech
is considered as the result of a glottal flow signal filtered by the vocal tract cavities and radiated by
the lips. The system transfer function H(z) then consists of the three following contributions:

H(z) = A ·G(z)V (z)R(z) (5.2)

where A is the source gain, G(z) the glottal flow over a single cycle, V (z) the vocal tract transmit-
tance and R(z) the radiation load. The resonant vocal tract contribution is generally represented for
"pure" vowels by a set of minimum-phase poles (|v2,k| < 1), while modeling nasalized sounds requires
to also consider minimum-phase (i.e causal) zeros (|v1,k| < 1). V (z) can then be written as the rational
form:

V (z) =

∏M
k=1(1− v1,kz

−1)
∏N

k=1(1− v2,kz−1)
(5.3)

During the production of voiced sounds, airflow arising from the trachea causes a quasi-periodic
vibration of the vocal folds [8]. These latter are then subject to quasi-periodic opening/closure cycles.
During the open phase, vocal folds are progressively displaced from their initial state because of the
increasing subglottal pressure [9]. When the elastic displacement limit is reached, they suddenly return
to this position during the so-called return phase. It has been shown in [10], [5] that the glottal open
phase can be modeled by a pair of maximum-phase (i.e anticausal) poles (|g2| > 1) producing the so-
called glottal formant, while the return phase can be assumed to be a first order causal filter response
(|g1| < 1) resulting in a spectral tilt :

G(z) =
1

(1− g1z−1)(1− g2z−1)(1− g∗2z
−1)

(5.4)

As for lip radiation, its action is generally assumed as a differential operator:

R(z) = 1− rz−1 (5.5)

with r close to 1. For this reason, it is generally preferred to consider G(z)R(z) in combination,
and consequently to study the glottal flow derivative or differentiated glottal flow instead of the glottal
flow itself.

Gathering the previous equations, the system z-transform H(z) can be expressed as a rational
fraction with general form [7]:

H(z) = A

∏Mi

k=1(1− akz
−1)

∏Ni

k=1(1− bkz−1)
∏No

k=1(1− ckz−1)
(5.6)

where ak and bk respectively denote the zeros and poles inside the unit circle (|ak| and |bk| < 1),
while ck are the poles outside the unit circle (|ck| > 1). The basic idea behind using causal-anticausal
decomposition for glottal flow estimation is the following: since ck are only related to the glottal flow,
isolating the maximum-phase (i.e anticausal) component of voiced speech should then give an estimation
of the glottal open phase. Besides, if the glottal return phase can be considered as abrupt and if the
glottal closure is complete, the anticausal contribution of speech corresponds to the glottal flow. If this
is not the case [11], these latter components are causal (given their damped nature) and the anticausal
contribution of voiced speech still gives an estimation of the glottal open phase.
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5.2 Causal-Anticausal Decomposition of Voiced Speech

Figure 5.1 - Illustration of the mixed-phase model. The three rows respectively correspond to the
glottal flow derivative, the vocal tract response, and the resulting voiced speech. These three signals are
all represented in four domains (from the left to the right): waveform, amplitude spectrum, pole-zero
modeling, and all-zero (or ZZT) representation. Each column shows how voiced speech is obtained, in
each of the four domains.

Figure 5.1 illustrates the mixed-phase model on a single frame of synthetic vowel. In each row the
glottal flow and vocal tract contributions, as well as the resulting speech signal, are shown in a different
representation space. It should be emphasized here that the all-zero representation (later referred to
as the Zeros of Z-Transform (ZZT) representation, and shown in the last column) is obtained by a root
finding operation (i.e. a finite(n)-length signal frame is represented with only zeros in the z-domain).
There exists n − 1 zeros (of the z-transform) for a signal frame with n samples. However the zero in
the third column comes from the AutoRegressive Moving Average (ARMA) model and hence should
not be confused with the ZZT. The first row shows a typical glottal flow derivative signal. From the
ZZT representation (last column, in polar coordinates), it can be noticed that some zeros lie outside
the unit circle while others are located inside it. The outside zeros correspond to the maximum-phase
glottal opening, while the others come from the minimum-phase glottal closure [6]. The vocal tract
response is displayed in the second row. All its zeros are inside the unit circle due to its damped
exponential character. Finally the last row is related to the resulting voiced speech. Interestingly its
set of zeros is simply the union of the zeros of the two previous components. This is due to the fact
that the convolution operation in the time domain corresponds to the multiplication of the z-transform
polynomials in the z-domain. For a detailed study of ZZT representation and the mixed-phase speech
model, the reader is referred to [6].
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5.2.2 Short-Time Analysis of Voiced Speech

For real speech data, Equation (5.1) is only valid for a short-time signal [12], [13]. Most practical
applications therefore require processing of windowed (i.e short-time) speech segments:

s(n) = w(n)x(n) (5.7)

= w(n)(A · p(n) ⋆ g(n) ⋆ v(n) ⋆ r(n)) (5.8)

and the goal of the decomposition is to extract the glottal source component g(n) from s(n). As
it will be discussed throughout this chapter, windowing is of crucial importance in order to achieve a
correct deconvolution. Indeed, the z-transform of s(n) can be written as:

S(z) = W (z) ⋆ X(z) (5.9)

=
N−1
∑

n=0

w(n)x(n)z−n (5.10)

= s(0)z−N+1
Mi
∏

k=1

(z − ZC,k)

Mo
∏

k=1

(z − ZAC,k) (5.11)

where ZC and ZAC are respectively a set of Mi causal (|ZC,k| < 1) and Mo anticausal (|ZAC,k| > 1)
zeros (with Mo +Mi = N − 1). As it will be underlined in Section 5.3.1, Equation (5.11) corresponds
to the ZZT representation.

From these expressions, two important considerations have now to be taken into account:

• Since s(n) is finite length, S(z) is a polynomial in z (see Eq. (5.11)). This means that the poles
of H(z) are now embedded under an all-zero form. Indeed let us consider a single real pole a.
The z-transform of the related impulse response y(n) limited to N poins is [14]:

Y (z) =
N−1
∑

n=0

anz−n =
1− (az−1)N

1− az−1
(5.12)

which is an all-zero form, since the root of the denominator is also a root of the numerator (and
the pole is consequently cancelled).

• It can be seen from Equations (5.9) and (5.10) that the window w(n) may have a dramatic
influence on S(z) [13], [8]. As windowing in the time domain results in a convolution of the
window spectrum with the speech spectrum, the resulting change in the ZZT is a highly complex
issue to study [15]. Indeed the multiplication by the windowing function (as in Equation (5.10))
modifies the root distribution of X(z) in a complex way that cannot be studied analytically. For
this reason, the impact of the windowing effects on the mixed-phase model is studied in this
chapter in an empirical way, as it was done in [13] and [8] for the convolutional model.

To emphasize the crucial role of windowing, Figures 5.2 and 5.3 respectively display a case of correct
and erroneous glottal flow estimation via causal-anticausal decomposition on a real speech segment. In
these figures, the top-left panel (a) contains the speech signal together with the applied window and
the synchronized differenced ElectroGlottoGraph dEGG (after compensation of the delay between the
laryngograph and the microphone). Peaks in the dEGG signal are informative about the location of
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the Glottal Closure Instant (GCI). The top-right panel (b) plots the roots of the windowed signal (ZC,k

and ZAC,k) in polar coordinates. The bottom panels (c) and (d) correspond to the time waveform and
amplitude spectrum of the maximum-phase (i.e anticausal) component which is expected to correspond
to the glottal flow open phase.

In Figure 5.2, an appropriate window respecting the conditions we will derive in Section 5.4 is
used. This results in a good separation between the zeros inside and outside the unit circle (see Fig.
5.2(b)). The windowed signal then exhibits good mixed-phase properties and the resulting maximum
and minimum-phase components corroborate the model exposed in Section 5.2.1. On the contrary, a
25 ms long Hanning window is employed in Figure 5.3, as widely used in speech processing. It can be
seen that even when this window is centered on a GCI, the resulting causal-anticausal decomposition
is erroneous. Zeros on each side of the unit circle are not well separated: the windowed signal does
not exhibit characteristics of the mixed-phase model. This simple comparison highlights the dramatic
influence of windowing on the deconvolution. In Section 5.4, we discuss in detail the set of properties
the window should convey so as to yield a good decomposition.

Figure 5.2 - Example of decomposition on a real speech segment using an appropriate window. (a):
The speech signal (solid line) with the synchronized dEGG (dotted line) and the applied window (dash-
dotted line). (b): The zero distribution in polar coordinates. (c): Two cycles of the maximum-phase
component (corresponding to the glottal flow open phase). (d): Amplitude spectra of the minimum
(dotted line) and maximum-phase (solid line) components of the speech signal. It can be observed that
the windowed signal respects the mixed-phase model since the zeros on each side of the unit circle are
well separated.

5.3 Algorithms for Causal-Anticausal Decomposition of Voiced

Speech

For a segment s(n) resulting from an appropriate windowing of a voiced speech signal x(n), two
algorithms are compared for achieving causal-anticausal decomposition, thereby leading to an estimate
g̃(n) of the real glottal source g(n). The first one relies on the Zeros of the Z-Transform (ZZT, [6]) and
is summarized in Section 5.3.1. The second technique is based on the Complex Cepstrum (CC) and
is described in Section 5.3.2. It is important to note that both methods are functionally equivalent
to each other, in the sense that they take the same input s(n) and should give the same output g̃(n).
As emphasized in Section 5.2.2, the quality of the decomposition then only depends on the applied
windowing, i.e whether s(n) = w(n)x(n) exhibits expected mixed-phase properties or not. It will
then be shown that both methods lead to similar results (see Section 5.5.2). However, on a practical
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Figure 5.3 - Example of decomposition on a real speech segment using a 25 ms long Hanning window.
(a): The speech signal (solid line) with the synchronized dEGG (dotted line) and the applied window
(dash-dotted line). (b): The zero distribution in polar coordinates. (c): Two cycles of the maximum-
phase component. (d): Amplitude spectra of the minimum (dotted line) and maximum-phase (solid
line) components of the speech signal. The zeros on each side of the unit circle are not well separated
and the windowed signal does not respect the mixed-phase model. The resulting deconvolved components
are irrelevant (while their convolution still gives the input speech signal).

point of view, the use of the complex cepstrum is advantageous since it will be shown that it is much
faster than ZZT. Note that we made a Matlab toolbox containing these two methods freely available
in http://tcts.fpms.ac.be/∼drugman/.

5.3.1 Zeros of the Z-Transform-based Decomposition

According to Equation (5.11), S(z) is a polynomial in z with zeros inside and outside the unit circle.
The idea of the ZZT-based decomposition is to isolate the roots ZAC and to reconstruct from them
the anticausal component. The algorithm can then be summarized as follows [6]:

1. Window the signal with guidelines provided in Section 5.4,

2. Compute the roots of the polynomial S(z),

3. Isolate the roots with a modulus greater than 1,

4. Compute G̃(z) from these roots.

A workflow summarizing the ZZT-based technique is given in Figure 5.4. Although very simple,
this technique requires the factorization of a polynomial whose order is generally high (depending on
the sampling rate and window length). Even though current factoring algorithms are accurate, the
computational load still remains high [16].

In addition to [6] where the ZZT algorithm is introduced, some recent studies [17], [18] have shown
that ZZT outperforms other well-known methods of glottal flow estimation in clean recordings. Its
main disadvantages are reported as sensitivity to noise and high computational load.

5.3.2 Complex Cepstrum-based Decomposition

Homomorphic systems have been developed in order to separate non-linearly combined signals [7]. As
a particular example, the case where inputs are convolved is especially important in speech processing.
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Figure 5.4 - Block diagram of the ZZT-based decomposition.

Separation can then be achieved by a linear homomorphic filtering in the complex cepstrum domain,
which interestingly presents the property to map time-domain convolution into addition. In speech
analysis, complex cepstrum is usually employed to deconvolve the speech signal into a periodic pulse
train and the vocal system impulse response [8], [13]. It finds applications such as pitch detection [19],
vocoding [20], etc.

We show here how to use the complex cepstrum in order to estimate the glottal flow by achiev-
ing the causal-anticausal decomposition introduced in Section 5.2.2. To our knowledge, no complex
cepstrum-based glottal flow estimation method is available in the literature. Hence it is one of the
novel contributions of this chapter to introduce one and to test it on a large real speech database.

The complex cepstrum (CC) ŝ(n) of a discrete signal s(n) is defined by the following equations [7]:

S(ω) =
∞
∑

n=−∞

s(n)e−jωn (5.13)

log[S(ω)] = log(|S(ω)|) + j 6 S(ω) (5.14)

ŝ(n) =
1

2π

∫ π

−π

log[S(ω)]ejωndω (5.15)

where Equations (5.13), (5.14) and (5.15) are respectively the Discrete-Time Fourier Transform
(DTFT), the complex logarithm and the inverse DTFT (IDTFT). A workflow summarizing the CCD-
based method is presented in Figure 5.5. One difficulty when computing the CC lies in the estimation
of 6 S(ω), which requires an efficient phase unwrapping algorithm. In this work, we computed the Fast
Fourier Transform (FFT) on a sufficiently large number of points (typically 4096) such that the grid
on the unit circle is sufficiently fine to facilitate in this way the phase evaluation.

If S(z) is written as in Equation (5.11), it can be easily shown [7] that the corresponding complex
cepstrum can be expressed as:

ŝ(n) =











|s(0)| for n = 0
∑Mo

k=1
ZAC,k

n

n
for n < 0

∑Mi

k=1
ZC,k

n

n
for n > 0

(5.16)
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Figure 5.5 - Block diagram of the Complex Cepstrum-based decomposition.

This equation shows the close link between ZZT and CC-based techniques. Relying on this equa-
tion, Steiglitz and Dickinson demonstrated the possibility of computing the complex cepstrum and
unwrapped phase by factoring the z-transform [21], [22]. The approach we propose is just the inverse
thought process in the sense that our goal is precisely to use the complex cepstrum in order to avoid
any factorization. In this way we show that the complex cepstrum can be used as an efficient means
to estimate the glottal flow, while circumventing the requirement of factoring polynomials (as it is the
case for the ZZT). Indeed it will be shown in Section 5.4.2 that optimal windows have their length
proportional to the pitch period. The ZZT-based technique then requires to compute the roots of
generally high-order polynomials (depending on the sampling rate and on the pitch). Although cur-
rent polynomial factoring algorithms are accurate, the computational load still remains high, with a
complexity order of O(n2) for the fastest algorithms [16], where n denotes the number of samples in
the considered frame. On the other hand, the CC-based method just relies on FFT and IFFT oper-
ations which can be fast computed, and whose order is O(NFFT log(NFFT )), where NFFT is fixed to
4096 in this work for facilitating phase unwrapping, as mentioned above. For this reason a change in
the frame length has little influence on the computation time for the CC-based method. Table 5.1
compares both methods in terms of computation time. The use of the complex cepstrum now offers
the possibility of integrating a causal-anticausal decomposition module into a real-time application,
which was previously almost impossible with the ZZT-based technique.

ZZT-based CC-based
Pitch decomposition decompostion
60 Hz 111.4 1.038
180 Hz 11.2 1

Table 5.1 - Comparison of the relative computation time (for our Matlab implementation with Fs =
16kHz) required for decomposing a two pitch period long speech frame. Durations were normalized
according to the time needed by the complex cepstrum-based deconvolution for F0 = 180Hz.

Regarding Equation (5.16), it is obvious that causal-anticausal decomposition can be performed
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using the complex cepstrum, as follows [23]:

1. Window the signal with guidelines provided in Section 5.4,

2. Compute the complex cepstrum ŝ(n) using Equations (5.13), (5.14) and (5.15),

3. Set ŝ(n) to zero for n > 0,

4. Compute g̃(n) by applying the inverse operations of Equations (5.13), (5.14) and (5.15) on the
resulting complex cepstrum.

Figure 5.6 illustrates the complex cepstrum-based decomposition for the example shown in Figure
5.2. A simple linear liftering keeping only the negative (positive) indexes of the complex cepstrum allows
to isolate the maximum and minimum phase components of voiced speech. It should be emphasized
that windowing is still very critical, as it is the case for the ZZT decomposition. The example in Figure
5.3 (where a 25ms long Hanning window is used) would lead to an unsuccessful decomposition. We
think that this critical dependence on the window function, length and location was the main hindrance
in developing a complex cepstrum-based glottal flow estimation method, although its potential was
known earlier in the literature [8].

It is also worth noting that since the CC method is an alternative means of achieving the mixed-
phase decomposition, it suffers from the same noise sensitivity as the ZZT does.

Figure 5.6 - The complex cepstrum ŝ(n) of the windowed speech segment s(n) presented in Figure
5.2(a). The maximum- (minimum-) phase component can be isolated by only considering the negative
(positive) indexes of the complex cepstrum.

5.4 Experiments on Synthetic Speech

The goal of this Section is to study, on synthetic speech signals, the impact of the windowing effects
on the causal-anticausal decomposition. It is one of the main contributions of this study to provide a
parametric analysis of the windowing problem and provide guidelines for reliable complex cepstrum-
based glottal flow estimation. The experimental protocol we opted for is close to the one presented in
[17]. Synthetic speech signals (sampled at 16 kHz) are generated for a wide range of test conditions
[23]. The idea is to cover the diversity of configurations one could find in natural speech by varying all
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parameters over their whole range. Synthetic speech is produced according to the source-filter model by
passing a synthetic train of Liljencrants-Fant (LF) glottal waves [24] through an auto-regressive filter
extracted by LPC analysis (with an order of 18) of real sustained vowels uttered by a male speaker. As
the mean pitch in these utterances is about 100 Hz, it is reasonable to consider that the fundamental
frequency should not exceed 60 and 180 Hz in continuous speech. Experiments in this section can then
be seen as a proof of concept on synthetic male speech. Table 5.2 summarizes all test conditions.

Pitch 60:20:180 Hz
Open quotient 0.4:0.05:0.9

Asymmetry coefficient 0.6:0.05:0.9
Vowel /a/, /@/, /i/, /y/

Table 5.2 - Table of synthesis parameter variation range.

Decomposition quality is assessed through two objective measures [23]:

• Spectral distortion : Many frequency-domain measures for quantifying the distance between
two speech frames have been proposed in the speech coding litterature [25]. Ideally the subjective
ear sensitivity should be formalised by incorporating psychoacoustic effects such as masking or
isosonic curves. A simple relevant measure between the estimated ĝ(n) and the real glottal pulse
g(n) is the spectral distortion (SD) defined as [25]:

SD(g, ĝ) =

√

∫ π

−π

(20 log10 |
G(ω)

Ĝ(ω)
|)2

dω

2π
(5.17)

where G(ω) and Ĝ(ω) denote the DTFT of the original target glottal pulse g(n) and of the
estimate ĝ(n). To give an idea, it is argued in [26] that a difference of about 1dB (with a
sampling rate of 8kHz) is rather imperceptible.

• Glottal formant determination rate : The amplitude spectrum for a voiced source generally
presents a resonance called the glottal formant ([27], see also Section 5.2.1). As this parameter is
an essential feature of the glottal open phase, an error on its determination after decomposition
should be penalized. For this, we define the glottal formant determination rate as the proportion
of frames for which the relative error on the glottal formant frequency is lower than 10%.

This formal experimental protocol allows us to reliably assess our technique and to test its sensivity
to various factors influencing the decomposition, such as the window location, function and length.
Indeed, Tribolet et al. already observed in 1977 that the window shape and onset may lead to zeros
whose topology can be detrimental for accurate pulse estimation [12]. The goal of this empirical study
on synthetic signals is precisely to handle these zeros close to the unit circle, so that the applied window
leads to a correct causal-anticausal separation.

5.4.1 Influence of the window location

In [8] the need of aligning the center of the window with the system response is highlighted. Analysis
is then performed on windows centered on GCIs, as these particular events demarcate the boundary
between the causal and anticausal responses, and the linear phase contribution is removed. Figure
5.7 illustrates the sensitivity of the causal-anticausal decomposition to the window position. It can
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be noticed that the performance rapidly degrades, especially if the window is centered on the left of
the GCI. It is then recommended to apply a GCI-centered windowing. For this, the performance of
methods for automatically detecting GCIs from the speech waveform has been studied in Chapter
3. The impact of the accuracy of these algorithms on the mixed-phase decomposition has even been
investigated in Section 3.5.2. For cases for which GCI information is not available or unreliable,
Chapter 7 will extend the formalism of the mixed-phase separation to a chirp analysis, allowing the
deconvolution to be achieved in an asynchronous way.

Figure 5.7 - Sensitivity of the causal-anticausal decomposition to a GCI location error. The spectral
distortion dramatically increases if a non GCI-centered windowing is applied (particularly on the left
of the GCI).

5.4.2 Influence of the window shape and length

In Section 5.2.2, Figures 5.2 and 5.3 showed an example of correct and erroneous decomposition respec-
tively. The only difference between these figures was the length and shape of the applied windowing.
To study this effect let us consider a particular family of windows w(n) of N points satisfying the form
[7]:

w(n) =
α

2
−

1

2
cos(

2πn

N − 1
) +

1− α

2
cos(

4πn

N − 1
) (5.18)

where α is a parameter comprised between 0.7 and 1 (for α below 0.7, the window includes negative
values which should be avoided). The widely used Hanning and Blackman windows are particular
cases of this family for α = 1 and α = 0.84 respectively. Figure 5.8 displays the evolution of the
decomposition quality when α and the window length vary. It turns out that a good deconvolution
can be achieved as long as the window length is adapted to its shape (or vice versa). For example,
the optimal length is about 1.5 T0 for a Hanning window and 1.75 T0 for a Blackman window. A
similar observation can be drawn from Figure 5.9 according to the spectral distortion criterion. Note
that we displayed the inverse spectral distortion 1/SD instead of SD only for better viewing purposes.
At this point it is interesting to notice that these constraints on the window aiming at respecting the
mixed-phase model are sensibly different from those imposed to respect the so-called convolutional
model [13], [8]. For this latter case, it was indeed recommended to use windows such as Hanning or
Hamming with a duration of about 2 to 3 pitch periods. It can be seen from Figure 5.8 that this
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would lead to poor causal-anticausal decomposition results. Finally note that it was proposed in [28]
to analytically derive the optimal frame length for the causal-anticausal decomposition, by satisfying
an immiscibility criterion based on a Cauchy bound.

Figure 5.8 - Evolution of the glottal formant determination rate according the window length and
shape. Note that the Hanning and Blackman windows respectively correspond to α = 1 and α = 0.84.

Figure 5.9 - Evolution of the inverse spectral distortion 1/SD according the window length and shape.
Note that the Hanning and Blackman windows respectively correspond to α = 1 and α = 0.84. The
inverse SD is plotted instead of the SD itself only for clarity purpose.

5.5 Experiments on Real Speech

The goal of this section is to show that a reliable glottal flow estimation is possible on real speech using
the complex cesptrum. The efficiency of this method will be confirmed in Sections 5.5.1 and 5.5.2 by
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analyzing short segments of real speech. Besides we demonstrate in Section 5.5.3 the potential of using
complex cepstrum for voice quality analysis on a large expressive speech corpus.

For these experiments, speech signals sampled at 16kHz are considered. The pitch contours are
extracted using the Snack library [29] and the GCIs are located directly from the speech waveforms
using the SEDREAMS algorithm proposed in Section 3.3 (or [30]). Speech frames are then obtained
by applying a GCI-centered windowing. The window we use satisfies Equation (5.18) for α = 0.7
and is two pitch period-long so as to respect the conditions derived in Section 5.4. Causal-anticausal
decomposition is then achieved by the complex cepstrum-based method.

5.5.1 Example of Decomposition

Figure 5.10 illustrates a concrete case of decomposition on a voiced speech segment (diphone /am/ )
uttered by a female speaker. The top plot displays the speech signal together with its corresponding
estimated glottal flow derivative (bottom plot). It can be seen that even on a nasalized phoneme the
glottal source estimation seems to be correctly carried out for most speech frames (i.e the obtained
waveforms turn out to corroborate the model of the glottal pulse described in Section 5.2.1). For some
rare cases the causal-anticausal decomposition is erroneous and the maximum-phase component con-
tains a high-frequency irrelevant noise. Nevertheless the spectrum of this maximum-phase contribution
almost always presents a low-frequency resonance due to the glottal formant. As an illustration, Figure
5.11 shows how the spectrum is altered when estimates include a high-frequency irrelevant noise. It is
observed that even for these cases, the low-frequency contents is maintained and contains information
about the glottal formant.

Figure 5.10 - Top panel: A segment of voiced speech (diphone /am/) uttered by a female speaker.
Bottom panel: Its corresponding glottal source estimation obtained using the complex cepstrum-based
decomposition. It turns out that a plausible estimation can be achieved for most of the speech frames.

5.5.2 Analysis of sustained vowels

In this experiment, we consider a sustained vowel /a/ with a flat pitch which was voluntarily produced
with an increasing pressed vocal effort 1. Here the aim is to show that voice quality variation is reflected
as expected on the glottal flow estimates obtained using the causal-anticausal decomposition. Figure
5.12 plots the evolution of the glottal formant frequency Fg and bandwidth Bw during the phonation

1Many thanks to N. Henrich and B. Doval for providing the recording of the sustained vowel.
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Figure 5.11 - Examples of spectrum obtained with the complex cepstrum-based decomposition. (a):
Two cycles of the glottal flow derivative for a plausible estimate, (b): the corresponding magnitude
spectrum, (c): Two cycles of the glottal flow derivative when the estimate contains an irrelevant high-
frequency noise, (d): the corresponding magnitude spectrum. It is observed that even for the worst
case (second row), the low-frequency contents is not altered and contains information about the glottal
formant.

[23]. These features were estimated with both ZZT and CC-based methods. It can be observed that
these techniques lead to similar results. The very slight differences may be due to the fact that, for
the complex cepstrum, Equation (5.16) is realized on a finite number n of points. Another possible
explanation is the precision problem in root computation for the ZZT-based technique. In any case,
it can be noticed that the increasing vocal effort can be characterized by increasing values of Fg and
Bw.

Figure 5.12 - Glottal formant characteristics estimated by both ZZT and CC-based techniques on a
real sustained vowel with an increasing pressed effort [23]. Left panel: Evolution of the glottal formant
frequency. Right panel: Evolution of the glottal formant 3dB bandwidth.
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5.5.3 Analysis of an Expressive Speech Corpus

The goal of this section is to show that the differences in the glottal source when a speaker produces
various voice qualities can be tracked using causal-anticausal decomposition. For this, the De7 database
is used 2. This database was designed by Marc Schroeder as one of the first attempts of creating diphone
databases for expressive speech synthesis [31]. The database contains three voice qualities (modal, soft
and loud) uttered by a German female speaker, with about 50 minutes of speech available for each
voice quality.

For each voiced speech frame, the complex cepstrum-based decomposition is performed. The re-
sulting maximum-phase component is then downsampled at 8kHz and is assumed to give an estimate
of the glottal flow derivative for the considered frame. For each segment of voiced speech, a signal
similar to the one illustrated in Figure 5.10 is consequently obtained. In this figure, it was observed
that an erroneous decomposition might appear for some frames, leading to an irrelevant high-frequency
noise in the estimated anticausal contribution (also observed in Figure 5.3). One first thing one could
wonder is how large is the proportion of such frames over the whole database.

As a criterion deciding whether a frame is considered as correctly decomposed or not, we inspect
the spectral center of gravity. The distribution of this feature is displayed in Figure 5.13 for the loud
voice. A principal mode at around 2kHz clearly emerges and corresponds to the majority of frames
for which a correct decomposition is carried out. A second minor mode at higher frequencies is also
observed. It is related to the frames where the causal-anticausal decomposition fails, leading to a
maximum-phase signal containing an irrelevant high-frequency noise (as explained above). It can be
noticed from this histogram (and it was confirmed by a manual verification of numerous frames) that
fixing a threshold at around 2.7 kHz makes a good distinction between frames that are correctly and
incorrectly decomposed.

According to this criterion, Table 5.3 summarizes for the whole database the percentage of frames
leading to a correct estimation of the glottal flow. It turns out that a high proportion of frames (around
85% for each dataset) are correctly decomposed. For the remaining frames, the windowed signal does
not match the mixed-phase model. This might be explained by a non-suited windowing, or by the fact
that during the production of these particular sounds the mixed-phase model does not hold. Indeed,
it is important to highlight that applying an appropriate windowing is a necessary but not sufficient
condition for achieving a correct deconvolution.

Voice Quality % of frames correctly decomposed

Loud 87.22%

Modal 84.41%

Soft 83.69%

Table 5.3 - Proportion of frames leading to a correct causal-anticausal decomposition for the three
voice qualities.

For each frame correctly deconvolved, the glottal flow is then characterized by the 3 following
common features described in Section 4.3:

• the Normalized Amplitude Quotient(NAQ) characterizing the glottal closing phase [32],

• the H1−H2 ratio widely used as a measure characterizing voice quality [33], [34], [35],

2Many thanks to M. Schroeder for providing the De7 database.

79



MIXED-PHASE DECOMPOSITION OF SPEECH USING COMPLEX CEPSTRUM

Figure 5.13 - Distribution of the spectral center of gravity of the maximum-phase component, computed
for the whole dataset of loud samples. Fixing a threshold around 2.7kHz makes a good separation between
correctly and incorrectly decomposed frames.

• and the Harmonic Richness Factor (HRF ) quantifying the amount of harmonics in the magnitude
spectrum of the glottal source and shown to be informative about the phonation type in [36] and
[35].

Figure 5.14 shows the histograms of these 3 parameters for the three voice qualities. Significant
differences between the distributions are observed. Among others it turns out that the production of
a louder (softer) voice results in lower (higher) NAQ and H1 − H2 values, and of a higher (lower)
Harmonic Richness Factor (HRF ). These conclusions corroborate the results recently obtained on
sustained vowels by Alku in [35] and [32]. Another observation that can be drawn from the histogram
of H1 − H2 is the presence of two modes for the modal and loud voices. This may be explained by
the fact that the estimated glottal source sometimes comprises a ripple both in the time and frequency
domains [37]. Indeed consider Figure 5.15 where two typical cycles of the glottal source are presented
for both the soft and loud voice. Two conclusions can be drawn from it. First of all, it is clearly seen
that the glottal open phase response for the soft voice is slower than for the loud voice. As it was
underlined in the experiment of Section 5.5.2, this confirms the fact Fg/F0 increases with the vocal
effort. Secondly the presence of a ripple in the loud glottal waveform is highlighted. This has two
possible origins: an incomplete separation between Fg and the first formant F1 [38], and/or a non-
linear interaction between the vocal tract and the glottis [37], [39]. This ripple affects the low-frequency
contents of the glottal source spectrum, and may consequently perturb the estimation of the H1−H2
feature. This may therefore explain the second mode in the H1 − H2 histogram for the modal and
loud voices (where ripple was observed).

5.6 Conclusion

This chapter explained the causal-anticausal decomposition principles in order to estimate the glottal
source directly from the speech waveform. We showed that the complex cepstrum can be effectively used
for this purpose as an alternative to the Zeros of the Z-Transform (ZZT) algorithm. Both techniques
were shown to be functionally equivalent to each other, while the complex cepstrum is advantageous for
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Figure 5.14 - Distributions, computed on a large expressive speech corpus, of glottal source parameters
for three voice qualities: (left) the Normalized Amplitude Quotient (NAQ), (middle) the H1−H2 ratio,
and (right) the Harmonic Richness Factor (HRF ).

Figure 5.15 - Comparison between two cycles of typical glottal source for both soft (dash-dotted line)
and loud voice (solid line). The presence of a ripple in the loud excitation can be observed.

its much higher speed, making it suitable for real-time applications. Windowing effects were studied
in a systematic way on synthetic signals. It was emphasized that windowing plays a crucial role. More
particularly we derived a set of constraints the window should respect so that the windowed signal
matches the mixed-phase model. Finally, results on a real speech database (logatoms recorded for the
design of an unlimited domain expressive speech synthesizer) were presented for voice quality analysis.
The glottal flow was estimated on a large database containing various voice qualities. Interestingly some
significant differences between the voice qualities were observed in the excitation. The methods pro-
posed in this chapter may be used in several potential applications of speech processing such as emotion
detection, speaker recognition, expressive speech synthesis, automatic voice pathology detection and
various other applications where real-time glottal source estimation may be useful. Finally note that a
Matlab toolbox containing these algorithms is freely available from http://tcts.fpms.ac.be/∼drugman/.
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A COMPARATIVE STUDY OF GLOTTAL SOURCE ESTIMATION TECHNIQUES

Abstract

Source-tract decomposition (or glottal flow estimation) is one of the basic problems of
speech processing. For this, several techniques have been proposed in the literature.
However studies comparing different approaches are almost nonexistent. Besides, exper-
iments have been systematically performed either on synthetic speech or on sustained
vowels. In this study we compare three of the main representative state-of-the-art meth-
ods of glottal flow estimation: closed-phase inverse filtering, iterative and adaptive inverse
filtering, and mixed-phase decomposition. These techniques are first submitted to an ob-
jective assessment test on synthetic speech signals. Their sensitivity to various factors
affecting the estimation quality, as well as their robustness to noise are studied. In a
second experiment, their ability to label voice quality (tensed, modal, soft) is studied on
a large corpus of real connected speech. It is shown that changes of voice quality are
reflected by significant modifications in glottal feature distributions. Techniques based
on the mixed-phase decomposition and on a closed-phase inverse filtering process turn
out to give the best results on both clean synthetic and real speech signals. On the other
hand, iterative and adaptive inverse filtering is recommended in noisy environments for
its high robustness.

This chapter is based upon the following publication:

• Thomas Drugman, Baris Bozkurt, Thierry Dutoit, A Comparative Study of Glottal Source Esti-
mation Techniques, Computer, Speech and Language, Elsevier, Accepted for publication.

Many thanks to Dr. Baris Bozkurt (Izmir Institute of Technology) for his helpful guidance.
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6.1 Introduction

6.1 Introduction

Chapter 4 briefly introduced the issue of source-tract (or source-filter) deconvolution (i.e the separation
of the glottal source and the vocal tract contributions) directly from the speech signal. As one of the
basic problems and challenges of speech processing research, glottal flow estimation has been studied
by many researchers and various techniques are available in the literature [1]. However the diversity
of algorithms and the fact that the reference for the actual glottal flow is not available often leads
to the questionability about relative effectiveness of the methods in real life applications. In most
of studies, tests are performed either on synthetic speech or on a few recorded sustained vowels. In
addition, very few comparative studies exist (such as [2]). In this chapter, we compare three of the main
representative state-of-the-art methods: closed-phase inverse filtering, iterative and adaptive inverse
filtering, and mixed-phase decomposition. For testing, we first follow the common approach of using
a large set of synthetic speech signals (by varying synthesis parameters independently), and then we
examine how these techniques perform on a large real speech corpus. In the synthetic speech tests, the
original glottal flow is available, so that objective measures of decomposition quality can be computed.
In real speech tests the ability of the methods to discriminate different voice qualities (tensed, modal
and soft) is studied on a large database (without limiting data to sustained vowels).

This chapter is structured as follows. In Section 6.2, the three techniques that are compared in
this study are detailed. These methods are representatives of the three appproaches for glottal source
estimation introduced in Section 4.2. They are evaluated in Section 6.3 through a wide systematic
study on synthetic signals. Their robustness to noise, as well as the impact of the various factors that
may affect source-tract separation, are investigated. Section 6.4 presents decomposition results on a
real speech database containing various voice qualities, and shows that the glottal source estimated by
the techniques considered in this work conveys relevant information about the phonation type. Finally
Section 6.5 draws the conclusions of this study.

6.2 Methods Compared in this Chapter

This section describes the three methods of glottal flow estimation that are evaluated and compared
in this chapter. These techniques were chosen as they are representatives of the three main state-of-
the-art categories of glottal source estimation methods (as presented in Section 4.2), and as they rely
on completely different perspectives.

6.2.1 Closed Phase Inverse Filtering

The Closed Phase Inverse Filtering (CPIF) technique aims at estimating a parametric model of the
spectral envelope, computed during the estimated closed phase duration, as the effects of the subglottal
cavities are minimized during this period, providing a better way for estimating the vocal tract transfer
function. In this study, the CPIF technique that is used is based on a Discrete All Pole (DAP, [3])
inverse filtering process estimated during the closed phase. In order to provide a better fitting of
spectral envelopes from discrete spectra [3], the DAP technique aims at computing the parameters of
an autoregressive model by minimizing a discrete version of the Itakura-Saito distance [4], instead of
the time squared error used by the traditional LPC. The use of the Itakura-Saito distance is justified
as it is a spectral distortion measure arising from the human hearing perception. The closed phase
period is determined using the Glottal Opening and Closure Instants (GOIs and GCIs) located by the
SEDREAMS algorithm detailed in Section 3.3 (or [5]). This algorithm has been shown to be effective
for reliably and accurately determining the position of these events on a large corpus containing several
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speakers. For tests with synthetic speech, the exact closed phase period is known and is used for CPIF.
Note that for high-pitched voices, two analysis windows were used as suggested in [6], [7] and [8]. In the
rest of the chapter, speech signals sampled at 16 kHz are considered, and the order for DAP analysis is
fixed to 18 (=Fs/1000+2, as commonly used in the literature). Through our experiments, we reported
that the choice of the DAP order is not critical in the usual range, and that working with an order
comprised between 12 and 18 leads to sensibly similar results. A workflow summarizing the CPIF
technique is given in Figure 6.1.

Speech

Signal

CP

Intervals

DAP

Param.

Glottal Flow

Estimate

GCI and GOI

Detection

DAP

Modeling

Inverse

Filtering

Figure 6.1 - Block diagram of the Closed Phase Inverse Filtering (CPIF) method for glottal flow
estimation.

6.2.2 Iterative Adaptive Inverse Filtering

The Iterative Adaptive Inverse Filtering (IAIF) method is a popular approach proposed by Alku in
[9] for improving the quality of the glottal flow estimation. It is based on an iterative refinement of
both the vocal tract and the glottal components. In [10], the same authors proposed an improvement,
in which the LPC analysis is replaced by the Discrete All Pole (DAP) modeling technique [3], shown
to be more accurate for high-pitched voices. In this study, we used the implementation of the IAIF
method [11] from the toolbox available on the TKK Aparat website [12], with its default options. A
workflow summarizing the IAIF method is presented in Figure 6.2.

Speech

Signal

DAP

Param.

Glottal Flow

Estimate

DAP

Modeling

Inverse

Filtering

Highpass

Filtering

Used for

iteration #1

Used for the next N-1 iterations

Figure 6.2 - Block diagram of the Iterative Adaptive Inverse Filtering (IAIF) method for glottal flow
estimation.

6.2.3 Complex Cepstrum-based Decomposition

As highlighted in Chapter 5, the Complex Cesptrum-based Decomposition (CCD) and the Zeros of
the Z-Transform (ZZT) techniques are two functionally equivalent algorithms for achieving the mixed-
phase separation. In the rest of this chapter, CCD is considered for its higher computational speed. To
guarantee good mixed-phase properties [13], GCI-centered two pitch period-long Blackman windows
are used. For this, GCIs were located on real speech using the SEDREAMS technique described in
Section 3.3 (or [5]). CC is calculated as explained in Section 5.3.2 and the Fast Fourier Transform
(FFT) is computed on a sufficiently large number of points (typically 4096), which facilitates phase
unwrapping.
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6.3 Experiments on Synthetic Speech

The experimental protocol on synthetic speech signals is similar to the one presented in Section 5.4.
However we here focus on a larger panel of sustained vowels which were uttered by a female speaker.
As the mean pitch during these utterances was about 180 Hz, it can be considered that fundamental
frequency should not exceed 100 and 240 Hz in continuous speech. For the LF parameters, the Open
Quotient Oq and Asymmetry coefficient αm are varied through their common range (see Table 6.1).
For the filter, 14 types of typical vowels are considered. Noisy conditions are modeled by adding a
white Gaussian noise to the speech signal at various Signal-to-Noise Ratios (SNRs), from almost clean
conditions (SNR = 80dB) to strongly adverse environments (SNR = 10dB). Table 6.1 summarizes all
test conditions, which makes a total of slightly more than 250,000 experiments. It is worth mentioning
that the synthetic tests presented in this section focus on the study of non-pathological voices with
a regular phonation. Although the glottal analysis of less regular voices (e.g presenting a jitter or a
shimmer; or containing an additive noise component during the glottal production, as it is the case
for a breathy voice) is a challenging issue, this latter problem is not addressed in the present study.
Nonetheless Chapter 8 will investigate the use of the glottal contribution for detecting voice disorders.

Source Filter Noise

Pitch (Hz) Oq αm Vowel type SNR (dB)
100:5:240 0.3:0.05:0.9 0.55:0.05:0.8 14 vowels 10:10:80

Table 6.1 - Table of synthesis parameter variation range.

The three source estimation techniques described in Section 4.2 (CPIF, IAIF and CCD) are com-
pared. In order to assess their decomposition quality, two objective quantitative measures are used
(and the effect of noise, fundamental frequency and vocal tract variations to these measures are studied
in detail in the next subsections):

• Error rate on NAQ and QOQ : As metioned in Section 4.3, the Normalized Amplitude
Quotient (NAQ) and the Quasi Open Quotient (QOQ) are two important features characterizing
the glottal flow. An error on their estimation after source-tract decomposition should therefore
be penalized. An example of distribution for the relative error on QOQ in clean conditions is
displayed in Figure 6.3. Many attributes characterizing such a histogram can be proposed to
evaluate the performance of an algorithm. The one we used in our experiments is defined as the
proportion of frames for which the relative error is higher than a given threshold of ±20%. The
lower the error rate on the estimation of a given glottal parameter, the better the glottal flow
estimation method.

• Spectral distortion : As introduced in the beginning of Section 5.4 (Equation (5.17)), the
Spectral Distortion (SD) is a simple and relevant measure, in the frequency domain, between the
estimated and the real glottal pulse.

An efficient technique of glottal flow estimation is then reflected by low spectral distortion values.
Based on this experimental framework, we now study how the glottal source estimation techniques
behave in noisy conditions, or with regard to some factors affecting the decomposition quality, such as
the fundamental frequency or the vocal tract transfert function.
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Figure 6.3 - Distribution of the relative error on QOQ for the three methods in clean conditions
(SNR = 80dB). The error rate is defined as the percentage of frames for which the relative error is
higher than a given threshold of 20% (indicated on the plot).

6.3.1 Robustness to Additive Noise

As mentioned above, white Gaussian noise has been added to the speech signal, with various SNR
levels. This noise is used as a (weak) substitute for recording or production noise but also for every
little deviation from the theoretical framework which distinguishes real and synthetic speech. Results
according to our three performance measures are displayed in Figure 6.4. As expected, all techniques
degrade as the noise power increases. More precisely, CCD turns out to be particularly sensitive.
This can be explained by the fact that a weak presence of noise may dramatically affect the phase
information, and consequently the decomposition quality. The performance of CPIF is also observed
to strongly degrade as the noise level increases. This is probably due to the fact that noise may
dramatically modify the spectral envelope estimated during the closed phase, and the resulting estimate
of the vocal tract contribution becomes erroneous. On the contrary, even though IAIF is, in average,
the less efficient on clean synthetic speech, it outperforms other techniques in adverse conditions (below
40 dB of SNR). One possible explanation of its robustness is the iterative process which it relies on. It
can be indeed expected that, although the first iteration may be highly affected by noise (as it is the
case for CPIF), the severity of the perturbation becomes weaker as the iterative procedure converges.

Figure 6.4 - Evolution of the three performance measures (error rate on NAQ and QOQ, and spectral
distortion) as a function of the Signal to Noise Ratio for the three glottal source estimation methods.
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6.3.2 Sensitivity to Fundamental Frequency

Female voices are known to be especially difficult to analyze and synthesize. The main reason for this
is their high fundamental frequency which implies to process shorter glottal cycles. As a matter of
fact the vocal tract response has not the time to freely return to its initial state between two glottal
sollication periods (i.e. the duration of the vocal tract response can be much longer than that of the
glottal closed phase). Figure 6.5 shows the evolution of our three performance measures with respect
to the fundamental frequency in clean conditions. Interestingly, all methods maintain almost the same
efficiency for high-pitched voices. Nonetheless an increase of the error rate on QOQ for CPIF, and
an increase of the spectral distortion for CCD can be noticed. It can be also observed that, for clean
synthetic speech, CCD gives the best results with an excellent determination of NAQ and a very low
spectral distortion. Secondly, despite its high spectral errors, CPIF leads to an efficient parametrization
of the glottal shape (with notably the best results for the determination of QOQ).

Figure 6.5 - Evolution of the three performance measures as a function of F0.

6.3.3 Sensitivity to Vocal Tract

In our experiments, filter coefficients were extracted by LPC analysis on sustained vowels. Even though
the whole vocal tract spectrum may affect the decomposition, the first formant, which corresponds to
the dominant poles, generally imposes the longest contribution of its time response. To give an idea of
its impact, Figure 6.6 exhibits, for the 14 vowels, the evolution of the spectral distortion as a function
of the first formant frequency F1. A general trend can be noticed from this graph: it is observed for
all methods that the performance of the glottal flow estimation degrades as F1 decreases. This will
be explained in the next section by an increasing overlap between source and filter components, as
the vocal tract impulse response gets longer. It is also noticed that this degradation is particularly
important for both CPIF and IAIF methods, while the quality of CCD (which does not rely on a
parametric modeling) is only slightly altered.

6.3.4 Conclusions on Synthetic Speech

Many factors may affect the quality of the source-tract separation. Intuitively, one can think about
the time interference between minimum and maximum-phase contributions, respectively related to the
vocal tract and to the glottal open phase. The stronger this interference, the more important the time
overlap between the minimum-phase component and the maximum-phase response of the next glottal
cycle, and consequently the more difficult the decomposition. Basically, this interference is conditioned
by three main parameters:

• the pitch F0, which imposes the spacing between two successive vocal system responses,
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Figure 6.6 - Evolution, for the 14 vowels, of the spectral distortion with the first formant frequency
F1.

• the first formant F1, which influences the length of the minimum-phase contribution of speech,

• and the glottal formant Fg, which controls the length of the maximum-phase contribution of
speech. Indeed, the glottal formant is the most important spectral feature of the glottal open
phase (see the low-frequency resonance in the amplitude spectrum of the glottal flow derivative
in Figure 4.2). It is worth noting that Fg is known [14] to be a function of the time-domain
characteristics of the glottal open phase (i.e of the maximum-phase component of speech): the
open quotient Oq, and the asymmetry coefficient αm.

A strong interference then appears with high pitch, and with low F1 and Fg values. The previous
experiments confirmed for all glottal source estimation techniques the performance degradation as a
function of F0 and F1. Although we did not explicitly measure the sensitivity of these techniques to
Fg in this chapter, it was confirmed in other informal experiments we performed.

It can be also observed from Figures 6.4 and 6.5 that the overall performance through an objective
study on synthetic signals is the highest for the complex cepstrum-based technique. This method leads
to the lowest values of spectral distortion and gives relatively high rates for the determination of both
NAQ and QOQ parameters. The CPIF technique exhibits better performance in the determination of
QOQ in clean conditions and especially for low-pitched speech. As for the IAIF technique, it turns out
that it gives the worst results in clean synthetic speech but outperforms other approaches in adverse
noisy conditions. Note that our results corroborate the conclusions drawn in [2] where the mixed-
phase deconvolution (achieved in that study by the ZZT method) was shown to outperform other
state-of-the-art approaches of glottal flow estimation.

6.4 Experiments on Real Speech

Reviewing the glottal flow estimation literature, one can easily notice that testing with natural speech
is a real challenge. Even in very recent published works, all tests are performed only on sustained
vowels. In addition, due to the unavailability of a reference for the real glottal flow (see Section
6.1), the procedure of evaluation is generally limited to providing plots of glottal flow estimates, and
checking visually if they are consistent with expected glottal flow models. For real speech experiments,
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here we will first follow this state-of-the-art experimentation (of presenting plots of estimates for a
real speech example), and then extend it considerably both by extending the content of the data to a
large connected speech database (including non-vowels), and extending the method to a comparative
parametric analysis approach.

In this study, experiments on real speech are carried out on the De7 corpus1, a diphone database
designed for expressive speech synthesis [15]. The database contains three voice qualities (modal, soft
and loud) uttered by a German female speaker, with about 50 minutes of speech available for each voice
quality (leading to a total of around 2h30). Recordings sampled at 16 kHz are considered. Locations
of both GCIs and GOIs are precisely determined from these signals using the SEDREAMS algorithm
described in Section 3.3 (or [5]). As mentioned in Section 4.2, an accurate position of both events is
required for an efficient CPIF technique, while the mixed-phase decomposition (as achieved by CCD)
requires, among others, GCI-centered windows to exhibit correct phase properties.

Let us first consider in Figure 6.7 a concrete example of glottal source estimation on a given voiced
segment (/aI/ as in "ice") for the three techniques and for the three voice qualities. In the IAIF
estimate, some ripples are observed as if some part of the vocal tract filter contribution could not be
removed. On the other hand, it can be noticed that the estimates from CPIF and CCD are highly
similar and are very close to the shape expected by the glottal flow models, such as the LF model [16].
It can be also observed that the abruptness of the glottal open phase around the GCI is stronger for
the loud voice, while the excitation for the softer voice is smoother.

Figure 6.7 - Example of glottal flow derivative estimation on a given segment of vowel ( /aI/ as in
" ice") for the three techniques and for the three voice qualities: (top) loud voice, (middle) modal voice,
(bottom) soft voice.

We now investigate whether the glottal source estimated by these techniques conveys information
about voice quality. Indeed the glottis is assumed to play an important part for the production of
such expressive speech [17]. As a matter of fact some differences between the glottal features are found
in our experiments on the De7 database. In this experiment, the NAQ, H1-H2 and HRF parameters
described in Section 4.3 are used. Figure 6.8 illustrates the distributions of these features estimated by
CPIF, IAIF and CCD for the three voice qualities. This figure can be considered as a summary of the

1Many thanks to M. Schroeder for providing the De7 database.
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voice quality analysis using three state-of-the-art methods on a large speech database. The parameters
NAQ, H1-H2 and HRF have been used frequently in the literature to label phonation types [18], [19],
[20]. Hence the separability of the phonation types based on these parameters can be considered as a
measure of effectiveness for a particular glottal flow estimation method.

For the three methods, significant differences between the histograms of the different phonation
types can be noted. This supports the claim that, by applying one of the given glottal flow estimation
methods and by parametrizing the estimate with one or more of the given parameters, one can perform
automatic voice quality/phonation type labeling with a much higher success rate than by random
labeling. It is noticed from Figure 6.8 that parameter distributions are convincingly distinct, except
for the IAIF and H1-H2 combination. The sorting of the distributions with respect to vocal effort
are consistent and in line with results of other works ([18] and [21]). Among other things, strong
similarities between histograms obtained by CPIF and CCD can be observed. In all cases, it turns out
that the stronger the vocal effort, the lower NAQ and H1-H2, and the higher HRF.

Figure 6.8 - Distributions, for various voice qualities, of three glottal features (from top to bottom:
NAQ, H1-H2 and HRF) estimated by three glottal source estimation techniques (from left to right:
CPIF, IAIF and CCD). The voice qualities are shown as dashed (loud voice), solid (modal voice) and
dotted (soft voice) lines.

Although some significant differences in glottal feature distributions have been visually observed, it
is interesting to quantify the discrimination between the voice qualities enabled by these features. For
this, the Kullback-Leibler (KL) divergence, known to measure the separability between two discrete
density functions A and B, can be used [22]:

DKL(A,B) =
∑

i

A(i) log2
A(i)

B(i)
(6.1)

Since this measure is non-symmetric (and consequently is not a true distance), its symmetrised
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version, called Jensen-Shannon divergence, is often prefered. It is defined as a sum of two KL measures
[22]:

DJS(A,B) =
1

2
DKL(A,M) +

1

2
DKL(B,M) (6.2)

where M is the average of the two distributions (M = 0.5∗ (A+B)). Figure 6.9 displays the values
of the Jensen-Shannon distances between two types of voice quality, for the three considered features
estimated by the three techniques.

From this figure, it can be noted that NAQ is the best discriminative feature (i.e. has the highest
Jensen-Shannon distance between distributions), while H1-H2 and HRF convey a comparable amount
of information for discriminating voice quality. As expected, the loud-soft distribution distances are
highest compared to loud-modal and modal-soft distances. In seven cases out of nine (three different
parameters and three different phonation type couples), CCD leads to the most relevant separation
and in two cases (loud-modal separation with NAQ, loud-modal separation with HRF) CPIF provides
a better separation. Both Figures 6.8 and 6.9 show that the effectiveness of CCD and CPIF is similar,
with slightly better results for CCD, while IAIF exhibits clearly lower performance (except for one
case: loud-modal separation with HRF).

Figure 6.9 - Jensen-Shannon distances between two types of voice quality using (from left to right) the
NAQ, H1-H2 and HRF parameters. For each feature and pair of phonation types, the three techniques
of glottal source estimation are compared.

6.5 Conclusion

This study aimed at comparing the effectiveness of the main state-of-the-art glottal flow estimation
techniques. For this, detailed tests on both synthetic and real speech were performed. For real
speech, a large corpus was used for testing, without limiting analysis to sustained vowels. Due to the
unavailability of the reference glottal flow signals for real speech examples, the separability of three
voice qualities was considered as a measure of the ability of the methods to discriminate different
phonation types. In synthetic speech tests, objective measures were used since the original glottal
flow signals were available. Our first conclusion is that the usefulness of NAQ, H1-H2 and HRF for
parameterizing the glottal flow is confirmed. We also confirmed other works in the literature (such
as [18] and [21]) showing that these parameters can be effectively used as measures for discriminating
different voice qualities. Our results show that the effectiveness of CPIF and CCD appears to be
similar and rather high, with a slight preference towards CCD. However, it should be emphasized here
that in our real speech tests, clean signals recorded for Text-To-Speech (TTS) synthesis were used. We
can thus confirm the effectiveness of CCD for TTS applications (such as emotional/expressive TTS).
However, for applications which require the analysis of noisy signals (such as telephone applications)
further testing is needed. We observed that in the synthetic speech tests, the ranking dramatically
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changed depending on the SNR and the robustness of CCD was observed to be rather low. IAIF
has lower performance in most tests (both in synthetic and real speech tests) but shows up to be
comparatively more effective in very low SNR values.
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Abstract

In Chapter 5, it was shown that the glottal source can be effectively estimated by sep-
arating the causal and anticausal components of speech. Two algorithms were proposed
for achieving the mixed-phase separation: the Zeros of the Z-Transform (ZZT) and the
Complex Cesptrum-based Decomposition (CCD). In order to guarantee a correct estima-
tion, some constraints on the window have been derived. Among these, the window has
to be synchronized on a Glottal Closure Instant (GCI). This chapter extends the formal-
ism of both ZZT and CCD methods by evaluating the z-transform on a contour (called
chirp contour) possibly different from the unit circle. For each method a technique is
proposed for the automatic determination of the optimal contour. The resulting method
is shown to give a reliable estimation of the glottal flow wherever the window is located.
This technique is then suited for its integration in usual speech processing systems, which
generally operate in an asynchronous way.

This chapter is based upon the following publications:

• Thomas Drugman, Thierry Dutoit, Chirp Complex Cepstrum-based Decomposition for Asyn-
chronous Glottal Analysis, Interspeech Conference, Makuhari, Japan, 2010.

• Thomas Drugman, Baris Bozkurt, Thierry Dutoit, Glottal Source Estimation Using an Auto-
matic Chirp Decomposition, Lecture Notes in Computer Science, Advances in Non-Linear Speech
Processing, volume 5933, pp. 35-42, 2010.

Many thanks to Dr. Baris Bozkurt (Izmir Institute of Technology) for his helpful guidance.
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7.1 Introduction

7.1 Introduction

It has been demonstrated in Chapter 5 that the Zeros of the Z-Transform (ZZT) and the Complex
Cesptrum-based Decomposition (CCD) techniques are functionally equivalent, and that they can be
efficiently used for source-tract separation. CCD was also compared in Chapter 6 to other state-of-
the-art methods for glottal source estimation, where it was shown to provide the best results on both
synthetic and real speech. However, as highlighted in Section 5.4.1, an essential constraint for leading
to a correct source-tract separation with these techniques is the condition of being synchronized on a
Glottal Closure Instant (GCI). Although some works aim at estimating the GCI positions directly from
the speech signal (see Chapter 3 or [1]), or use ElectroGlottoGraphs (EGGs, [2]), the large majority
of current speech processing systems do not have this information available and consequently operate
in an asynchronous way, i.e use a constant frame shift. This chapter proposes a modification of the
formalism of both ZZT and CCD so that they can be integrated within asynchronous systems. For
this, the z-transform is evaluated on a contour (called chirp contour) possibly different from the unit
circle. A way to automatically determine the optimal contour is also proposed for both ZZT and CCD.
As a result, it will be shown that the estimation is much less sensitive to GCI detection errors.

The chapter is structured as follows. Section 7.2.1 investigates the extension of the ZZT formalism
by making use of a chirp analysis. The resulting method is then evaluated on both synthetic and real
speech signals in Section 7.2.2. The same issue is adressed for the CCD approach in Section 7.3. The
performance of the chirp CCD method is then assessed on a large expressive speech corpus in Section
7.3.2. Finally Section 7.4 concludes the chapter.

7.2 Extension of the ZZT Method to Chirp Decomposition

7.2.1 Theoretical Framework

As introduced in Section 5.3.1, the ZZT technique achieves mixed-phase decomposition by calculating
the zeros of the z-transform. Some of these zeros lie inside the unit circle, while others are located
outside. The firsts are due to the causal (or minimum-phase) component of speech, which is related
to the vocal tract response and the glottal return phase. On the contrary, zeros outside the unit circle
are due to the anticausal (or maximum-phase) component of speech, which is related to the glottal
open phase. The mixed-phase decomposition can then be achieved by separating the ZZT using the
unit circle in the z-plane as a discriminant boundary. Nevertheless, to obtain such a separation, the
effects of the windowing are known to play a crucial role, as emphasized in Section 5.4. In particular,
it was notably shown that a Blackman window centered on the Glottal Closure Instant (GCI) and
whose length is twice the pitch period is appropriate in order to achieve a good decomposition.

The Chirp Z-Transform (CZT), as introduced by Rabiner et al [3] in 1969, allows the evaluation
of the z-transform on a spiral contour in the z-plane. Its first application aimed at separating too
close formants by reducing their bandwidth. Nowadays CZT has been applied to several fields of
signal processing such as time interpolation, homomorphic filtering, pole enhancement, narrow-band
analysis,...

As previously mentioned, the ZZT-based decomposition is strongly dependent on the applied win-
dowing. This sensitivity may be explained by the fact that ZZT implicitly conveys phase information,
for which time alignment is known to be crucial. In [4], it is observed that the window shape and onset
may lead to zeros whose topology can be detrimental for accurate pulse estimation. The subject of
this work is precisely to handle these zeros close to the unit circle, such that the ZZT-based technique
correctly separates the causal (i.e minimum-phase) and anticausal (i.e maximum-phase) components.
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For this, we evaluate the CZT on a circle whose radius R is chosen so as to split the root distribution
into two well-separated groups. More precisely, it is observed that the significant impulse present in
the excitation at the GCI results in a gap in the root distribution. When analysis is exactly GCI-
synchronous, the unit circle perfectly separates causal and anticausal roots. On the opposite, when
the window moves off from the GCI, the root distribution is transformed. Such a decomposition is
then not guaranteed for the unit circle and another boundary is generally required. Figure 7.1 gives an
example of root distribution for a natural voiced speech frame for which an error of 0.6 ms is made on
the real GCI position. It is clearly seen that using the traditional ZZT-based decomposition (R = 1)
for this frame will lead to erroneous results. In contrast, it is possible to find an optimal radius leading
to a correct separation (around 0.96 in this case).

Figure 7.1 - Example of root distribution for a natural speech frame. Left panel: representation in the
z-plane, Right panel: representation in polar coordinates. The chirp circle (solid line) allows a correct
decomposition, contrarily to unit circle (dotted line).

In order to automatically determine such a radius, let us have the following thought process. We
know that ideally the analysis should be GCI-synchronous. When this is not the case, the chirp analysis
tends to modify the window such that its center coincides with the nearest GCI (to ensure a reliable
phase information). Indeed, evaluating the chirp z-transform of a signal x(t) on a circle of radius R is
equivalent to evaluating the z-transform of x(t) · exp(log(1/R) · t) on the unit circle (see Equation (7.3)
as a proof). It can be demonstrated (see Appendix A) that for a Blackman window w(t) of length L
starting in t = 0:

w(t) = 0.42− 0.5 · cos(
2πt

L
) + 0.08 · cos(

4πt

L
), (7.1)

the radius R necessary to modify its shape so that its new maximum lies in position t∗ (< L) is
expressed as:

R = exp[
2π

L
·

41 tan2(πt
∗

L
) + 9

25 tan3(πt
∗

L
) + 9 tan(πt

∗

L
))
]. (7.2)

In particular, we verify that R = 1 is optimal when the window is GCI-centered (t∗ = L
2 ) and,

since we are working with two-period long windows, the optimal radius does not exceed exp(± 50π
17L) in
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the worst cases (the nearest GCI is then positioned in t∗ = L
4 or t∗ = 3L

4 ).
As a means for automatically determining the radius allowing an efficient separation, the sorted root

moduli are inspected and the greatest discontinuity in the interval [exp(− 50π
17L), exp(

50π
17L)] is detected.

Radius R is then chosen as the middle of this discontinuity, and is assumed to optimally split the roots
into minimum and maximum-phase contributions.

Figure 7.2 - Determination of radius R (dashed line) for ZCZT computation by detecting, within the
bounds exp(± 50π

17L) (dotted lines), a discontinuity (indicated by rectangles) in the sorted root moduli
(solid line).

7.2.2 Evaluation

This section gives a comparative evaluation of the following methods:

• the traditional ZZT-based technique: R = 1,

• the proposed ZCZT-based technique: R is computed as explained at the end of Section 7.2.1 (see
Fig. 7.2),

• the ideal ZCZT-based technique: R is computed from Equation 7.2 where the real GCI location
t∗ is known. This can be seen as the ultimate performance one can expect from the ZCZT-based
technique.

Among others, it is emphasized how the proposed technique is advantageous in case of GCI location
errors.

Results on Synthetic Speech

The experimental protocol on synthetic speech signals adopted in this section is identical to the one
described in Section 5.4. In addition, a perturbation is taken into account by considering a possible
error on the GCI location. This may vary between -50% and 50% of T0, with a step of 5%. To evaluate
the performance of our methods, the two same objective measures as in Section 5.4 are used, namely
the determination rate on the glottal formant frequency Fg at 20% (i.e the percentage of frames for
which the relative error made on Fg is lower than 20%), and the spectral distortion.

Figure 7.3 compares the results obtained for the three methods according to their sensitivity to
GCI location. The high sensitivity of the traditional ZZT to GCI synchronization is clearly confirmed,
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as the performance severely degrades as the window center moves off from the GCI. Interestingly, the
proposed ZCZT-based technique is clearly seen as an enhancement of the traditional ZZT approach
when an error on the exact GCI position is made. Besides the proposed approach is also observed to
give a performance almost equivalent to the ideal ZCZT-based method.

Figure 7.3 - Comparison of the traditional ZZT (dashdotted line), proposed ZCZT (solid line) and
ideal ZCZT (dotted line) based methods on synthetic signals according to their sensitivity to an error
on the GCI location. Left panel: Influence on the determination rate on the glottal formant frequency.
Right panel: Influence on the spectral distortion.

Results on Real Speech

Figure 7.4 displays an example of decomposition on a real voiced speech segment (vowel /e/ from
BrianLou4.wav of the Voqual03 database, Fs = 16kHz). The top panel exhibits the speech waveform
together with the synchronized (compensation of the delay between the laryngograph and the micro-
phone) differenced Electroglottograph (EGG) informative about the GCI positions. The center and
bottom panels compare respectively the detected glottal formant frequency Fg and the radius for the
three techniques. In the middle panel, deviations from the constant Fg can be considered as errors
since Fg is expected to be almost constant during three pitch periods. It may be noticed that the tra-
ditional ZZT-based method degrades if analysis is not achieved in the GCI close vicinity. Contrarily,
the proposed ZCZT-based technique gives a reliable estimation of the glottal source on a large segment
around the GCI. Besides the obtained performance is comparable to what is carried out by the ideal
ZCZT.

In Figure 7.5 the glottal source estimated by the traditional ZZT and the proposed ZCZT-based
method are displayed for four different positions of the window (for the vowel /a/ from the same file).
It can be observed that the proposed technique (solid line) gives a reliable estimation of the glottal
flow wherever the window is located. On the contrary the sensivity of the traditional approach can be
clearly noticed since its glottal source estimation turns out to be irrelevant when the analysis is not
performed in a GCI-synchronous way.
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Figure 7.4 - Comparison of ZZT and ZCZT-based methods on a real voiced speech segment. Top panel:
the speech signal (solid line) with the synchronized differenced EGG (dashed line). Middle panel: the
glottal formant frequency estimated by the traditional ZZT (dashdotted line), the proposed ZCZT (solid
line) and the ideal ZCZT (dotted line) based techniques. Bottom panel: Their corresponding radius
used to compute the chirp Z-transform.

7.3 Extension of the Complex Cepstrum-based Method to Chirp De-

composition

7.3.1 Theoretical Framework

As it is the case for the ZZT technique, the principle of the Complex Cepstrum-based Decomposition
(CCD) relies on the mixed-phase model of speech [5]. Although both techniques are functionnaly
equivalent (see Section 5.3.2), CCD was shown in Chapter 5 to be much faster than ZZT. For this
reason, this section only focuses on the use of the Complex Cepstrum.

In the chirp ZZT technique introduced in Section 7.2, the whole root distribution is calculated
and, relying on this distribution, a chirp contour in the z-plane is found so as to optimally split the
minimum and maximum-phase contributions. On the contrary, the CCD method aims at avoiding the
root computation by making use of the Complex Cepstrum. Based on the conclusions of Section 7.2,
it is here proposed to integrate the chirp analysis whitin the Complex Cepstrum-based Decomposition
and to automatically find the optimal circle without requiring the computation of the root distribution
(so as to still benefit from the speed of the CCD algorithm).

Achieving a chirp ZZT-based decomposition is straightforward since it is only necessary to modify
the radius used to isolate the maximum-phase component. In order to integrate the chirp analysis for
the CCD technique, let us consider the signal x(n). Its CZT evaluated on a circle of radius R can be
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Figure 7.5 - Examples of glottal source estimation using either the traditional ZZT or the proposed
ZCZT-based method. Top panel: a voiced speech segment (solid line) with the synchronized differenced
EGG (dashed line) and four different positions of the window (dotted line). Panels (a) to (d): for the
corresponding window location, two cycles of the glottal source estimation achieved by the traditional
ZZT (dotted line) and by the proposed ZCZT-based technique (solid line).

written as [3]:

X(Rz) =
L−1
∑

n=0

x(n)(Rz)−n =
L−1
∑

n=0

(x(n)R−n)z−n (7.3)

and is consequently equivalent to evaluating the z-transform of a signal x′R(n) = x(n)R−n on the
unit circle. The chirp CCD computed on a circle of radius R can therefore be achieved by applying
the traditional CCD framework described in Section 5.3.2 to x′R(n) instead of x(n).

In order to automatically estimate the radius giving an optimal separation between minimum and
maximum-phase contributions, the unwrapped phase φ′

R(ω) of x′R(n) is inspected. More precisely, the
radius axis is uniformly discretized in N values (N = 60 in our experiments) between the bounds
exp(± 50π

17L). For each radius value R, φ′
R(ω) is computed and the linear phase component is character-

ized by φ′
R(π) (with φ′

R(0) = 0 by definition). From this, we define the variable nd(R):

nd(R) =
φ′
R(π)

π
(7.4)

as the number of samples of circular delay, i.e the number of samples that x′R(n) shoud be circularly
shifted so as to remove its linear phase component.

Figure 7.6 shows the evolution of nd(R) for the same signal as used in Figure 7.1. nd(R) is actually
a step function where gaps are due to the passage of some roots from the inside to the outside of the
considered chirp circle. These phase discontinuities are illustrated in Figure 7.7. Indeed consider a
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Figure 7.6 - Evolution of nd(R) for the same signal as in Figure 7.1. The optimal radius (solid line)
is defined as the middle of the largest interval (indicated by squares) for which nd(R) stays constant,
within the bounds exp(± 50π

17L) (dotted lines). The unit circle used in the traditional CCD is represented
in dashdotted line.

zero which, initially located inside the circle of radius R1 used for the evaluation of the CZT, is now
passed outside of the circle of radius R2 (with R1 > R2). When the CZT is evaluated on a point close
to this zero in the z-plane, this results in a phase jump of −π (see angles α1 and α2 in Fig. 7.7) which
is then reflected in φ′

R(π). The difference nd(R1)− nd(R2) is consequently interpreted as the number
of zeros which, initially inside the circle of radius R1, have passed the boundary to be now located
outside the circle of radius R2. In other words, inspecting the variable nd(R) allows us to detect the
discontinuities in the root distribution (without requiring its whole computation). Similarly to what
is done in Section 7.2.1 for the chirp ZZT, the optimal radius used for the chirp CCD is then defined
as the middle of the largest interval for which nd(R) stays constant, within the bounds exp(± 50π

17L).

Figure 7.7 - Illustration of a phase jump of −π due to the passage of a zero from the inside of the
circle of radius R1 to the outside of the circle of radius R2.

7.3.2 Evaluation

Experiments are carried out on the De7 corpus 1. The database contains three voice qualities (modal,
soft and loud) uttered by a German female speaker, with about 50 minutes of speech available for
each voice quality [6]. Besides, GCI positions are estimated by the SEDREAMS algorithm described
in Section 3.3.

1Many thanks to Marc Schroeder for providing the De7 database.
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The goal of this section is to compare the traditional and the proposed chirp CCD techniques by
studying their efficiency for glottal source estimation. Experiments are divided into two parts. In the
first one, the sensitivity of both methods to GCI location errors is investigated. In the second part,
the whole expressive speech database is analyzed by the two techniques and it is shown that chirp
CCD leads to results similar to the traditional CCD, but without the requirement of operating in a
GCI-synchronous way.

Robustness to GCI location errors

When performing mixed-phase separation, it may appear for some frames that the decomposition is
erroneous, leading to an irrelevant high-frequency noise in the estimated glottal source (see Section
5.5.3). A criterion based on the spectral center of gravity and deciding whether a frame is considered
as correctly decomposed or not, has been proposed in Section 5.5.3. Relying on Figure 5.13, it has been
shown that fixing a threshold for the spectral center of gravity of the estimated glottal source at around
2.7kHz makes a good distinction between frames that are correctly and incorrectly decomposed.

Given this criterion, the sensitivity of both traditional and chirp CCD techniques to a GCI location
error (assuming the GCI detection by SEDREAMS as a reference) is displayed in Figure 7.8 for the
loud dataset of the De7 corpus. The constraint of being GCI-synchronous for the traditional CCD is
clearly confirmed on this graph. It is indeed seen that the performance dramatically degrades for this
technique as the window center moves off from the GCI. On the contrary, the chirp CCD method gives a
high rate of correctly decomposed frames (however slightly below the performance of the GCI-centered
traditional CCD) wherever the window is located.

Figure 7.8 - Robustness of both traditional and chirp CCD methods to a timing error on the GCI
location.

Asynchronous glottal analysis of emotional speech

In this section, we confirm the potential of the chirp CCD technique for asynchronously estimating
the glottal flow on a large speech corpus. For this, the whole De7 database with its 3 voice qualities is
analyzed. The glottal flow is estimated by 2 techniques:

• the traditional CCD: analysis is GCI-synchronous (the GCI positions being determined by the
SEDREAMS algorithm),
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• the chirp CCD: analysis is asynchronous. A constant frame shift of 10ms is considered, as widely
used in many speech processing systems. Note however that a two pitch period-long Blackman
window is applied, as this is essential for achieving a correct mixed-phase decomposition (see
Section 5.4.2).

In a first time, we evaluate the proportion of frames that are correctly decomposed by these two
techniques using the spectral center of gravity criterion. Overall results for the three voice qualities
are summarized in Table 7.1. The traditional CCD gives relatively high rates of correct decomposition
with around 85% for the three datasets. It can also be observed that the chirp CCD method makes
double the erroneous decompositions than the traditional approach. Nevertheless a correct estimation
of the glottal source is carried out by the chirp CCD for around 70% of speech frames, which is rather
high for real connected speech.

Method Loud Modal Soft
traditional CCD 87.22 84.41 83.69

chirp CCD 76.43 68.07 67.48

Table 7.1 - Proportion (%) of correctly decomposed frames using the traditional and the chirp CCD
techniques for the three voice qualities of the De7 database.

Figure 7.9 - Distributions of glottal parameters estimated by (from top to bottom) the traditional
and chirp CCD techniques, for three voice qualities. The considered glottal features are (from left to
right): the Normalized Amplitude Quotient (NAQ), the H1-H2 ratio and the Harmonic Richness Factor
(HRF).

In a second time, frames of the glottal flow that were correctly estimated are characterized by
the three following features (see Section 4.3 for their definition): the Normalized Amplitude Quotient
(NAQ), the H1-H2 ratio between the two first harmonics and the Harmonic Richness Factor (HRF).
These glottal parameters were shown in [7] and [8] to lead to a good separation between different types of
phonation. The histograms of these parameters estimated by both traditional and chirp CCD methods
are displayed in Figure 7.9 for the three voice qualities. Two main conclusions can be drawn from this
figure. First, it turns out that the distributions obtained by both techniques are strongly similar. A
minor difference can however be noticed for NAQ histograms, where the distributions obtained by the
chirp method contain a weak irrelevant peak at low NAQ values. The second important conclusion is
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that both techniques can be efficiently used for glottal-based voice quality analysis, leading to a clear
discrimination between various phonation types.

7.4 Conclusion

This chapter proposed an extension of both the traditional Zeros of the Z-Transform (ZZT) and the
Complex Cepstrum-based Decomposition (CCD) techniques. For this, the z-transform was evaluated
on a contour in the z-plane possibly different from the unit circle. Circular contours were considered
and an automatic way to find the optimal radius leading to well-separated groups of zeros was proposed.
The resulting methods were shown to be much more robust to Glottal Closure Instant location errors
than their traditional (non chirp) equivalent. Interestingly a reliable estimation of the glottal flow was
obtained in an asynchronous way on real connected speech. Besides the proposed chirp CCD technique
showed its potential to be used for automatic voice quality analysis. Thanks to its low computational
load, the chirp CCD method is then suited for being incorporated within a real-time asynchronous
speech processing application.

In the current version of the chirp CCD algorithm, the calculation of the linear phase φ′
R(π)

is achieved using operations of FFT and phase unwrapping, which may be suboptimal in terms of
computation time. Further work could address the acceleration of this process, for example relying on
the time center of gravity [9], or using properties of the root distribution with respect to the unit circle
[10].
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USING GLOTTAL-BASED FEATURES FOR DETECTING VOICE PATHOLOGIES

Abstract

This chapter addresses the problem of automatic detection of voice pathologies directly
from the speech signal. More precisely, we investigate the use of the glottal source
estimation and phase-based features as a means to discriminate voice disorders. First we
analyze the complementarity of characteristics derived from the glottal flow with features
related to the speech signal, or to prosody. The relevance of these features is assessed
through mutual information-based measures. This allows an intuitive interpretation in
terms of discrimation power and redundancy between the features, independently of any
subsequent classifier. We analyze which characteristics are interestingly informative or
complementary for detecting voice pathologies. In a second time, we explore the potential
of using phase-based features for automatically detecting voice disorders. It is shown that
group delay functions are appropriate for characterizing irregularities in the phonation.
Besides the adequacy of the mixed-phase model of speech is discussed. The proposed
phase-based features are evaluated and compared to other parameters derived from the
magnitude spectrum. They turn out to convey a great amount of relevant information,
leading to high discrimination performance. The detection performance is also assessed
via the use of an Artificial Neural Network.

This chapter is based upon the following publications:

• Thomas Drugman, Thomas Dubuisson, Thierry Dutoit, On the Mutual Information between
Source and Filter Contributions for Voice Pathology Detection, Interspeech Conference, Brighton,
United Kingdom, 2009.

• Thomas Drugman, Thomas Dubuisson, Thierry Dutoit, Phase-based Information for Voice
Pathology Detection, IEEE International Conference on Acoustics, Speech and Signal Processing,
Prague, Czech Republic, 2011.

Many thanks to Thomas Dubuisson for his collaboration.
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8.1 Introduction

8.1 Introduction

Voice pathology refers to the diagnosis and treatment of functional and organic speech defects and
disorders [1]. These may have several origins, such as vocal cords nodule or polyps, Reinke’s edema,
etc [1]. The acoustic evaluation of voice disorders is an essential tool for clinicians and is performed in
a perceptive and objective way. On the one hand, the perceptive evaluation consists in qualifying and
quantifying the voice disorder by listening to the production of a patient. This evaluation is performed
by trained professionals who rate the phonation, e.g. using the Grade, Roughness, Breathiness, Aesthe-
nia, Strain (GRBAS) scale [2]. This approach suffers from the dependency on the listener experience,
as well as the inter- and intra-judges variability. On the other hand, the objective evaluation aims at
qualifying and quantifying the voice disorder by acoustical, aerodynamic and physiological measures.
Compared to methods based on electroglottography or high-speed imaging, the objective evaluation
presents the advantage of being quantitative, cheaper, faster and more comfortable for the patient.

In order to provide objective tools to clinicians, a part of research in speech processing has focused
on the detection of speech pathologies from audio recordings. Indeed it could be useful to detect
disorders when the perturbations are still weak, to prevent the degradation of the pathology, or to
quantify the voice quality before and after surgery in case of stronger disorders [3].

Traditional methods of voice pathology detection generally rely on the computation of acoustic
features extracted from the speech signal. From another point of view, video recordings of the vo-
cal folds show that the behaviour of the vocal folds is linked to the perception of different kinds of
voice qualities, including pathologies (for instance, the incomplete closure of the folds can imply the
perception of a breathy voice [4]). Isolating and parametrizing the glottal excitation should therefore
lead to a better discrimination between normophonic and dysphonic voices. Such parametrizations of
the glottal pulse have already been proposed both in time and frequency domains (see Chapter 4, or
[5]). It is for example used to characterize different types of phonations [6] or to derive biomechanical
parameters for voice pathology detection [3].

In addition several studies on speech perception, such as [7], have highlighted the importance of
phase information. In this way, phase-based features have recently shown their efficiency in various
fields of speech processing, such as automatic speaker [8] or speech [9] recognition. Among others,
conclusions drawn in these works underline the complementarity of phase-based features with usual
parameters extracted from the magnitude spectrum.

The goal of this chapter is two-fold. First of all, a set of new features, mainly based on the
glottal source estimation, is extracted through pitch-synchronous analysis. These proposed features
are compared according to their relevance for the problem of automatic voice pathology detection.
For this, we make use of information theoretic measures. This is advantageous in that the approach is
independent of any classifier and allows an intuitive interpretation in terms of discrimination power and
redundancy between the features. Secondly, we investigate the potential of using features derived from
the phase information for the same purpose, which, to the best of our knowledge, was never explored
in the literature. It can be indeed expected that speech representations based on the phase convey
relevant information for this task. The detection performance of these latter features is also evaluated,
in addition to the information theoretic measures, using an Artificial Neural Network (ANN).

Experiments in this chapter are led on a popular database in the domain of speech pathologies:
the MEEI Disordered Voice Database, produced by KayPentax Corp [10]. This database contains
sustained vowels and reading text samples, from 53 subjects with normal voice and 657 subjects with
a large panel of pathologies. Recordings are linked to information about the subjects (age, gender,
smoking or not) and to analysis results. In this work, all the sustained vowels of the MEEI Database
resampled at 16 kHz are considered.
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USING GLOTTAL-BASED FEATURES FOR DETECTING VOICE PATHOLOGIES

This chapter is structured as follows. Section 8.2 provides a necessary background on the measures
derived from the Information Theory that are used throughout this chapter. Their interpretation for
a classification problem is also highlighted. Section 8.3 then investigates the complementarity of char-
acteristics derived from the glottal and the speech signals. For this, the various features are described
in Section 8.3.1, some of them being extracted from an estimation of the glottal source obtained by
the Iterative Adaptative Inverse Filtering (IAIF) method (see Section 4.2.1 or [11]). Experiments and
results using these features are detailed in Section 8.3.2. It is discussed which features are particularly
informative for detecting a voice disorder and which ones are interestingly complementary or synergic.
Section 8.4 focuses on the potential of phase-based features for voice disorder analysis. The proposed
phase-based features are detailed in Section 8.4.1, and their efficiency is evaluated in Section 8.4.2.
Finally Section 8.5 concludes.

8.2 Background on Information Theory-based Measures

The problem of automatic classification consists in finding a set of features Xi such that the uncertainty
on the determination of classes C is reduced as much as possible [12]. For this, Information Theory
[13] allows to assess the relevance of features for a given classification problem, by making use of
the following measures (where p(.) denotes a probability density function, and where c and xi are a
discretized version of variables C and Xi):

• The entropy of classes C is expressed as:

H(C) = −
∑

c

p(c) log2 p(c) (8.1)

and can be interpreted as the amount of uncertainty on their determination.

• The mutual information between one feature Xi and classes C:

I(Xi;C) =
∑

xi

∑

c

p(xi, c) log2
p(xi, c)

p(xi)p(c)
(8.2)

can be viewed as the information the feature Xi conveys about the considered classification
problem, i.e the discrimination power of one individual feature.

• The joint mutual information between two features Xi, Xj , and classes C can be expressed as (do
not confuse the notation "," for a joint distribution and ";" used to separate random variables
in a mutual information expression):

I(Xi, Xj ;C) = I(Xi;C) + I(Xj ;C)− I(Xi;Xj ;C) (8.3)

and corresponds to the information that features Xi and Xj , when used together, bring to the
classification problem. The last term can be written as:

I(Xi;Xj ;C) =
∑

xi

∑

xj

∑

c

p(xi, xj , c) · log2
p(xi, xj)p(xi, c)p(xj , c)

p(xi, xj , c)p(xi)p(xj)p(c)
(8.4)

An important remark has to be underlined about the sign of this term. It can be noticed
from Equation (8.3) that a positive value of I(Xi;Xj ;C) implies some redundancy between the
features, while a negative value means that features present some synergy (depending on whether
their association brings less or more than the addition of their own individual information).
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8.3 On the Complementarity of Glottal and Filter-based Features

In order to evaluate the significance of the proposed features, the following measures are computed:

• the relative intrinsic information of one individual feature I(Xi;C)
H(C) , i.e the percentage of relevant

information conveyed by the feature Xi,

• the relative redundancy between two features I(Xi;Xj ;C)
H(C) , i.e the percentage of their common

relevant information,

• the relative joint information of two features I(Xi,Xj ;C)
H(C) , i.e the percentage of relevant information

they convey together.

For this, Equations (8.1) to (8.4) are calculated. Probability density functions are estimated by
a histogram approach. The number of bins was set to 50 for each feature dimension, which results
in a trade-off between an adequately high number for an accurate estimation, while keeping sufficient
samples per bin. Since features are extracted at the frame level, a total of around 32000 and 107000
pitch-synchronous examples is available in the MEEI database respectively for normal and pathological
voices. Mutual information-based measures can then be considered as being accurately estimated.
Class labels correspond to the presence or not of a dysphonia.

8.3 On the Complementarity of Glottal and Filter-based Features

This section focuses on the usefullness of glottal-based features for voice pathology detection. First
of all, Section 8.3.1 describes the features considered in the following. These features are related
to the glottal flow, to the vocal tract or to prosody. Relying on the measures derived from the
Information Theory and which were presented in Section 8.2, the complementarity, redundancy and
intrisic discrimination power of these features are discussed in Section 8.3.2.

8.3.1 Feature Extraction

The features considered in the present study characterize two signals. Some features are extracted from
the speech signal, as in traditional methods of voice pathology detection. Others are extracted from the
glottal source estimation in order to take into account the contribution of the glottis in the production
of a disordered voice. All proposed features are extracted on pitch-synchronous frames in voiced parts
of speech. For this, the pitch and voicing decision are computed using the Snack library [14] while
Glottal Closure Instants (GCIs) are located on the speech signals using the DYPSA algorithm [15].
The choice of DYPSA was mainly motivated by the fact that it was the most well-known method of
GCI detection at the time of these experiments. Given its low robustness (as studied in Section 3.6), it
can be expected that the presence of a voice disorder will affect its performance, and will therefore be
reflected in the resulting GCI-synchronous time-domain features (assuming that parameters extracted
from the amplitude spectrum are relatively insensitive to an error of synchronization). In this work,
glottal source-based frames are two pitch period-long while speech frames have a fixed length of 30 ms.
In all cases, a GCI-centered Blackman weighting window is applied.

Speech signal-based features

It is generally considered that the spectrum of speech signal contains information about the presence
of a pathology. The spectral content can be exploited using specific correlates between harmonics and
formants although it must be noticed that these measures are dependent upon the phonetic context
[3]. Another way for summarizing the spectral content is to compute characteristics describing its
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USING GLOTTAL-BASED FEATURES FOR DETECTING VOICE PATHOLOGIES

spreading in energy. Most of the time these descriptors are designed to highlight the presence of noise.
For instance, it is proposed in [16] to divide the [0-11kHz] frequency range into 5 frequency bands and
to compute the ratio of energy between some pairs of bands and between each band and the whole
frequency range.

In the present study, it has been chosen to follow a similar idea as [16], considering this time the
perceptive mel scale, with the hope of being closer to human perception. The power spectral density
is weighted by a mel-filterbank consisting of 24 triangular filters equally spaced along the whole mel
scale. The Perceptive Energy (PE) associated to each filter and the spectral balances are defined as:

Bal1 =

∑4
i=1 PE(i)

∑24
i=1 PE(i)

(8.5)

Bal2 =

∑12
i=5 PE(i)

∑24
i=1 PE(i)

(8.6)

Bal3 =

∑24
i=13 PE(i)

∑24
i=1 PE(i)

(8.7)

where PE(i) denotes the perceptive energy computed in the ith mel band. The global spreading of
spectral energy can also be captured in the spectral centroid, also known as spectral center of gravity
(CoG).

In addition, many studies attempt to quantify the presence of noise in the speech signal, as it is
supposed to be linked to the perception of voiced disorders. Many parameters have been proposed
to quantify the importance of the spectral noise, one of the most popular being the Harmonic-to-
Noise Ratio (HNR) [17]. Basically this descriptor aims at quantifying the ratio between the energy
of the harmonic and noise components of the spectrum. HNR is here computed using the Praat
software [18] for comparison purpose. Besides we compute the so-called maximum voiced frequency
Fm, as suggested in the Harmonic plus Noise Model (HNM, [19]). According to this model, the
maximum voiced frequency dermacates the boundary between two distinct spectral bands, where
respectively an harmonic and a stochastic modeling are supposed to hold. The higher Fm, the stronger
the harmonicity, and consequently the weaker the presence of noise in speech. An example of Fm
determination is displayed in Figure 8.1.

Glottal source-based features

In this part, the glottal source is estimated by the Iterative Adaptive Inverse Filtering (IAIF) method.
IAIF is a popular approach proposed by Alku in [11] for improving the quality of the glottal flow
estimation. IAIF is here used as it gave the best robustness performance in Section 6.3.1, which is a
clear advantage for processing speech containing a voice disorder.

The amplitude spectrum for a voiced source generally presents a low-frequency resonance called
glottal formant, produced during the glottal open phase (see Section 4.1 or [20]). The glottal formant
frequency (Fg) and bandwidth (Bw) are consequently two important characteristics of the glottal
signal. As shown in [21], as long as the applied windowing is GCI-centered, relatively sharp and two
period-long, considering only the left-part of the window makes a good approximation of the glottal
open phase, allowing an accurate estimation of Fg and Bw.

An example of glottal frames for both normal and pathological voices is given in Figure 8.2. It can
be noticed that the discontinuity at the GCI is more significant for the normal voice. One possible
way to quantify this is to take the minimum value at the GCI (minGCI) of frames normalized in
energy and length. Apart from Fg, Bw and minGCI, spectral balances Bal1, Bal2, Bal3 and center
of gravity CoG were also calculated on the glottal source frames.
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8.3 On the Complementarity of Glottal and Filter-based Features

Figure 8.1 - Example of maximum voiced frequency Fm determination on a frame of normal voice.
Harmonics are indicated (x) and Fm corresponds to the last detected harmonic.

Figure 8.2 - Comparison between a normal (solid) and pathological (dashed line) glottal frame. The
minimum values around the GCI are indicated (x) and are an image of the discontinuity strength
occuring at this moment.

Prosodic features

It is often considered that dysphonic speakers have difficulty in maintaining stable prosodic character-
istics during sustained vowels. These perturbations can be quantified by means of jitter and shimmer
measures [22]. In the present study, the prosodic features are inspired by these measures. Indeed, for
each frame, DeltaF0 and DeltaE are respectively defined as the variation of pitch and energy around
their respective median value calculated over the whole phonation of sustained vowels.

8.3.2 Results

The values of the measures derived from Information Theory (see Section 8.2) for the features proposed
in Section 8.3.1 are presented in Table 8.1. The diagonal of this table indicates the percentage of
relevant information conveyed by each feature. It turns out that features describing the speech spectrum
contents are particularly informative (57% for Bal1), as well as Fm (41.4%) and minGCI (47.7%).
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The top-right part of Table 8.1 contains the values of relative joint information of two features, while
the bottom-left part shows the relative redundancy between two features. Prosodic features convey
few relevant information but are rather synergic with features from two other categories. Although
features describing the speech spectrum are intrinsically relevant, they are fairly redundant between
them (for example, Bal1 and Bal2 present 49.4% of redundancy). More interestingly it can be noted
that they are relatively complementary to glottal-based features. In particular the association of
minGCI and Bal1 brings the most important joint mutual information (81.1%). Fig. 8.3 displays the
joint distributions of these features for both normophonic and dysphonic voices. A clear separability
between both classes can be observed. In addition it is confirmed that dysphonic speakers generally
have difficulties in producing an abrupt glottal closure (leading to low values of minGCI).

Figure 8.3 - Example of separability for the two features giving the highest joint information.

8.4 Using Phase-based Features for Detecting Voice Disorders

This section investigates the usefulness of phase-based features for the automatic detection of a voice
pathology. Although not strictly motivated by any physiological process, as it is the case for the glottal
flow, these features are related to the vocal chords behavior. It will be shown that they are particularly
well suited for highlighting turbulences during the phonation process, and therefore for the discernment
of a voice disorder. Section 8.4.1 first presents the phase-based features used in the remaining of this
chapter. The potential of these features for voice pathology detection is then evaluated in Section
8.4.2.

8.4.1 Phase-based Features

This section presents the characteristics based on the speech signal phase information that are evaluated
in Section 8.4.2. Analysis relying on the group delay function is first detailed. The respect of the mixed-
phase model in both normo and dysphonic voices is then discussed.

Group Delay-based Analysis

The group delay function is defined as the derivative of the unwrapped phase spectrum. However,
the group delay computed in this way contains spikes due to the presence of some zeros of the sig-
nal z-transform close to the unit circle (where the Fourier transform is evaluated). Therefore group
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delay processing has been avoided for a long time. Nevertheless, some new representations aiming
at reducing the effect of these spikes have been recently suggested, leading to some improvements in
speech recognition, especially in noisy conditions [9], [23], [24]. This section explores the use of these
new modes of representation for determining the presence of a voice disorder. For this, 5 types of
spectrograms are considered in this work:

• The Fourier Magnitude (FM) spectrogram is the commonly adopted representation in
speech processing, here introduced as a baseline.

• The STRAIGHT spectrogram is based on a restructuration of the speech representation by
using a pitch-adaptive time-frequency smoothing of the FM spectrogram [25].

• The Modified Group Delay (ModGD) spectrogram is a function introduced by Hegde et
al. in [9] using a cepstral smoothing in order to reduce the effect of the spikes on the group delay
function.

• The Product of the Power and Group Delay (PPGD) spectrogram also aims at reducing
the source of spikes, and is defined in [23] as the product of the power spectrum and the group
delay function.

• Finally, the Chirp Group Delay (CGD) spectrogram is a representation proposed by
Bozkurt et al. in [24] which relies on a chirp (i.e the Fourier transform is evaluated on a contour
in the z-plane different from the unit circle) analysis of the zero-phase version of the speech signal.
Note that this approach is completely different from the chirp mixed-phase separation presented
in Chapter 7. The chirp technique (with a fixed predefined radius in this case) is here used to
provide a high-resolved representation of the formant peaks, as initially suggested by Rabiner in
[26].

In order to give an illustration, Figure 8.4 compares the five spectrograms for a segment of sustained
vowel /a/ for two typical normophonic and dysphonic voices. It can be noticed from these plots that
spectrograms of the normophonic voice present a regular structure in time, while their equivalents for
the dysphonic speech contain time-varying irregularities. These are probably due to the difficulties
of the patient suffering from a voice disorder in sustaining a regular phonation. Indeed, during the
production of a sustained vowel, the vocal tract can be assumed as a stationary system on a short-
time period, even for pathological voices. The speech signal then results from the excitation of this
stationary system by the glottal source. As a consequence, a regular glottal flow will be characterized
by a smooth spectrogram. On the opposite, if the resolution of the spectrogram is sufficiently high,
turbulences or cycle-to-cycle variations present in the glottal flow will be reflected by irregularities in
the spectrogram structure, as exhibited in the bottom plots of Fig. 8.4. It is also observed in Figure
8.4 that these irregularities are particularly well emphasized in the CGD spectrogram. This approach
is indeed known for giving both a smooth and high-resolved representation for showing up resonance
peaks in the speech spectrum [24].

Adequacy with the Mixed-Phase Model of Speech

The principle of mixed-phase separation has been deeply studied in Chapter 5. It has been shown,
among others, that it allows an efficient estimation of the glottal open phase by isolating the maximum-
phase component of speech. In this work, mixed-phase deconvolution is achieved using the Complex
Cepstrum-based Decomposition (CCD) proposed in Section 5.3.2 (or [27]). If CCD is applied to a
windowed segment of voiced speech exhibiting characteristics of the mixed-phase model, source-tract
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8.4 Using Phase-based Features for Detecting Voice Disorders

Figure 8.4 - Illustration of the five types of spectrograms for a segment of sustained vowel /a/ for
both normophonic (top plots) and dysphonic (bottom plots) voices. The spectrograms are related to
the following representation (from left to right): the Fourier Magnitude (FM), the STRAIGHT, the
Modified Group Delay (ModGD), the Product of the Power and Group Delay (PPGD), and the Chirp
Group Delay (CGD) spectrograms.

separation can be correctly carried out. Two cycles of the resulting anticausal component are displayed
in Fig. 8.5(a), providing a reliable estimation of the glottal source (i.e corroborating the glottal flow
models). If this is not the case, the decomposition fails and the resulting anticausal contribution has
an irrelevant shape (as shown in Fig. 8.5(b)), generally characterized by a high-frequency noise.

Figure 8.5 - Two cycles of the anticausal component isolated by the mixed-phase decomposition (top
plot): when the speech segment exhibits characteristics of the mixed-phase model, (bottom plot): when
this is not the case. The particular instants defining the two proposed time constants are also indicated.

In order to assess the quality of the mixed-phase separation, two time features are extracted from
the maximum-phase signal. These two features characterize the glottal open phase response and are
defined with the help of Figure 8.5. If T0 denotes the pitch period, the first time constant T1 is
defined as tmin−tmax

T0
, while the second one T2 is computed as tmin−top

T0
. These parameters should then

contain relevant information about the consistency of the mixed-phase decomposition, i.e whether this
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deconvolution leads to a reliable estimation of the glottal flow or not.

8.4.2 Evaluation of the Proposed Phase-based Features

Method Implementation

The five spectrograms defined in Section 8.4.1 are computed using Blackman-windowed frames shifted
every 10ms and whose length is 30ms. For this, the Fourier spectrum is estimated by a DFT of 1024
points. All other parameters are fixed to the values recommended in the corresponding references.
For each spectrogram, the relative difference between two consecutive frames is calculated, since this
feature should convey relevant information about glottal source irregularities. In the rest of the chapter,
the prefix d ahead of the name of a spectrogram type will be used for denoting this feature. It is worth
emphasizing that since we consider frame-to-frame variations, the resulting features are robust to
differences between recording conditions or equipments, and among others to phase distortion.

The mixed-phase decomposition is achieved using the CCD algorithm proposed in [27]. Since
this method requires a GCI-synchronous process, Glottal Closure Instants (GCIs) are located on the
speech signals using the DYPSA algorithm [15], for the same reasons as in Section 8.3.1. Therefore
the possible failure of GCI estimation for pathological voices is implicitly captured in the mixed-phase
based features. For each resulting frame, one cycle of the anticausal component of speech is isolated
and time constants T1 and T2 are extracted from it. In order to be synchronous with the other features,
these streams are then interpolated at 100Hz.

The three spectral balances Bal1, Bal2 and Bal3 proposed in Section 8.3.1 are also extracted from
the FM spectrogram. These balances were defined as the power spectral density in three perceptual
subbands (see Equations (8.5) to (8.7)), and were shown in Table 8.1 to be highly discriminant for
detecting a voice disorder.

Mutual Information-based Evaluation

In this part, the proposed features are compared according to their relevance for the problem of voice
pathology detection. For this, we make use of information-theoretic measures described in Section
8.2. This is advantageous since the approach is independent of any classifier and allows an intuitive
interpretation in terms of discrimination power. More precisely, the normalized Mutual Information
(MI) of the proposed features is here studied. As a reminder, this measure is the relative intrinsic
information of one individual feature I(Xi;C)

H(C) , i.e the percentage of relevant information conveyed by
the feature Xi about the classification problem.

Table 8.2 presents the values of the normalized MI for the 10 features. As expected from the
results of Section 8.3.2 , the two first spectral balances are strongly informative. From the various
spectrogram representations, the Chirp Group Delay (CGD) provides the highest amount of relevant
information (covering 56% of the total uncertainty). Although in a lesser extent, the Modified Group
Delay (ModGD) and the two time constants characterizing the mixed-phase decomposition show an
interesting potential for voice pathology detection. However, it is worth noting that the normalized
MI is a measure of the intrinsic discrimination power of each feature separately, and consequently
is not informative about the redundancy between them. The mutual information-based measures of
redundancy are not exhaustively presented here as it was done in Table 8.1. Nevertheless, the main
conclusions that can be drawn from them are the following. Albeit spectral balances have the highest
normalized MI in Table 8.2, they are also highly redundant. In this way, the joint use of Bal1 and
Bal2 only brougth 63.0% of MI. On the contrary, the best combination of two features is surprisingly
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T2 and Bal1 (which is not straightforward at the only sight of Table 8.2), with 79.31% of MI. This is
possible as these two features present a very low amount of redundancy.

Feature dFM dSTRAIGHT dModGD dPPGD dCGD
Normalized MI (%) 22.32 16.32 30.56 15.43 55.97

Feature T1 T2 Bal1 Bal2 Bal3
Normalized MI (%) 32.02 23.09 57.02 55.38 17.29

Table 8.2 - Values of the normalized mutual information for the 10 features.

Classifier-based Evaluation

This section aims at evaluating the proposed features using a classifier for the automatic detection of
voice disorders. For this, an Artificial Neural Network (ANN, [28]) is used for its discriminant learning
capabilities. The ANN employed in this study has only one hidden layer and uses sigmoid as activation
functions. The hidden layer is made of 16 neurons, as this gave the best trade-off between complexity
and generalization capabilities in our attempts. Evaluation is achieved using a 10-fold cross validation
framework. The system is finally assessed at both frame and patient levels (a patient is diagnosed as
dysphonic if the majority of his frames are recognized as pathological).

Feature set name Features used Error rate (%) Error rate (%)
(frame level) (patient level)

Fourier Magnitude dFM 17.2 8.73
Chirp Group Delay dCGD 9.40 4.93

Mixed-phase model-based T1,T2 13.28 5.35
Two best features Bal1,T2 8.65 5.07
Spectral balances Bal1,Bal2,Bal3 9.97 7.89

Group Delay-based dModGD,dPPGD,dCGD 7.92 4.08
Spectrogram-based dFM,dSTRAIGHT, 8.25 4.65

dModGD,dPPGD,dCGD
Phase-based T1,T2, 7.97 4.08

dModGD,dPPGD,dCGD
Whole feature set All 10 features 6.16 4.08

Table 8.3 - Results of voice pathology detection using an ANN classifier for various feature sets.

Results we obtained are presented in Tab.8.3 for different feature sets. Several conclusions can be
drawn from these results. First of all, the efficiency of dCGD is confirmed as this feature alone leads
to only 4.93% of patients incorrectly classified. Its advantage over the traditional Fourier Magnitude
(dFM) spectrum can be noted. In the experiments using only 2 or 3 parameters, the improvement
brought by the proposed features compared to the spectral balances is clearly seen. Indeed the two time
constants characterizing the respect of the mixed-phase model lead, at the patient level, to a better
classification than when using the 3 spectral balances. In addition, the use of T2 in combination with
Bal1 is more performant than the 3 spectral balances, confirming the discussion about redundancy in
the previous subsection. It is worth noting the high performance achieved when using the 3 GD-based
features. Adding the 2 magnitude-based spectrograms to these latter even leads to a slight degradation
of accuracy. Similarly, it can be observed that adding the two mixed-phase model-based time constants
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makes the performance almost unchanged. Finally, considering all 10 features correctly identifies
93.84% of frames and 95.92% of patients. However, it is interesting to notice that the best performance
at the patient level was already achieved using only the 3 GD-based representations. Although not
reported in Tab.8.3, it is worth noting that for these 3 latter features, the rates of false positive and
negative patients are respectively of 16.98% and 3.04%. The high rate of false positive detections can
be explained by the unbalance of the MEEI database, leading to an overestimation of pathologies.
Nonetheless, relying on a Receiver Operating Characteristic (ROC) curve, one could modify these
latter rates by playing on the posterior threshold for deciding whether a frame is pathological or not
(i.e a frame could be pathological with a probability greater or lower than 0.5).

8.5 Conclusion

This chapter focused on the problem of automatic detection of voice pathologies from the speech signal.
The use of the glottal source estimation was investigated and a set of new features was proposed. The
resulting extracted features were assessed through mutual information-based measures. This allowed
their interpretation in terms of discrimination power and redundancy. It turned out that features
describing the speech spectrum contents are particularly informative, as well as the maximum voiced
frequency and the glottal discontinuity at the GCI. It was also shown that speech and glottal-based
features are relatively complementary, while they present some synergy with prosodic characteristics.
The potential of using phase-based features for detecting voice pathologies was also explored. It
was shown that representations based on group delay functions are particularly suited for capturing
irregularities in the speech signal. The adequacy of the mixed-phase model during the voice production
was discussed and shown to convey relevant information. Besides it was underlined that phase-based
and magnitude spectrum-based features may present interesting complementarity for this task, showing
among others a very weak redundancy. The efficiency of these phase-based features may be explained
by their higher sensitivity to turbulences during the phonation process.
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Abstract

More and more efforts in speech processing are nowadays devoted to the analysis and
synthesis of expressive speech (i.e speech revealing affect). This interest is motivated by
a need in more and more natural human-machine interactions. The focus of research
has then shifted from read speech to conversational styles of speech. This chapter aims
at studying the glottal-based modifications of two particular types of expressive speech:
Lombard speech and hypo or hyperarticulated speech. The Lombard effect refers to the
speech changes due to the immersion of the speaker in a noisy environment. These are
(generally unconsciously) intended so as to maximize the intelligibility of the delivered
message. We analyze how the glottal behaviour is altered in Lombard speech, as a function
of the type and level of the surrounding noise. As a second specific mode of expressivity,
hypo and hyperarticulation are studied. Hyperarticulated speech refers to the voice for
which clarity tends to be maximized, while hypoarticulation results from a production
with minimal efforts. We investigate how characteristics of both the vocal tract and the
glottis are affected.

This chapter is based upon the following publications:

• Thomas Drugman, Thierry Dutoit, Glottal-based Analysis of the Lombard Effect, Interspeech
Conference, Makuhari, Japan, 2010.

• Benjamin Picart, Thomas Drugman, Thierry Dutoit, Analysis and Synthesis of Hypo and Hyper-
articulated Speech, 7th ISCA Speech Synthesis Workshop, Kyoto, Japan, 2010.

Many thanks to Benjamin Picart for his collaboration on the experiments of Section 9.3.
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9.1 Introduction

9.1 Introduction

Arising from a need in more natural interactions with the machine, a part of the speech processing
community has focused on the analysis and synthesis of expressive speech. A gain of interest has shifted
from read speech to conversational styles of speech. Indeed, in real human-machine interactions, there
is need for more than just the intelligible portrayal of linguistic information; there is also a need for
the expression of affect [1]. One has then to deal with all subtleties conveyed in the extralinguistic and
paralinguistic information, besides the usual phonetic content of read speech.

In the previous chapters (see for example Section 6.4), it was already shown on a large corpus of
expressive speech (the De7 database) that the glottal source is informative about the produced voice
quality (modal, soft or loud). A study of glottal modifications led on a large corpus of expressive speech
(e.g sad, dictated or narrative speech) was recently carried out by Sturmel in [2]. This chapter now
focuses on the analysis of two other modes of expressivity: Lombard speech (Section 9.2) and hypo
or hyperarticulated speech (Section 9.3). Although acoustic changes also concern prosodic or vocal
tract-based features, we here focus on the glottal modifications in expressive speech, emphasizing the
usefullness of the methods described in Part II. Albeit the glottal behaviour was expected to change
in expressive speech, the automatic analysis of such voices on large corpora (i.e not limited to a few
sustained vowels) is rather limited in the literature. Results presented in the following were possible
thanks to the development of efficient methods of glottal flow estimation and parametrization, as
studied in the previous chapters of Part II. Finally Section 9.4 concludes the chapter.

9.2 Glottal-based Analysis of Lombard Speech

9.2.1 The Lombard Effect

The Lombard effect, as originally highlighted by Dr. Lombard in 1909 [3], refers to the speech changes
due to the immersion of the speaker in a noisy environment. In such a context, the speaker tends
(generally unconsciously) to modify its way of uttering so as to maximize the intelligibility of its
message [4]. On a physiological point of view, an hyper-articulation is observed when the subject
speaks in noisy conditions, which is reflected by an amplification of the articulatory movements [5].
As a consequence the Lombard effect encompasses a set of acoustic and phonetic modifications in the
speech signal. These modifications affect the efficiency of speech processing systems and have to be
compensated for an optimal performance. Among these systems, the compensation of the Lombard
effect in speech recognition [6], [7] and speaker recognition [8] have already been studied.

The analysis of Lombard speech has been studied in several works ([4], [9], [7], [5], [8]). In these
studies, the acoustic and phonetic features that were inspected include the vocal intensity, phoneme
durations, the fundamental frequency, the spectral tilt, and the formant frequencies. In this way, the
Lombard effect is known to result in an increased vocal intensity and fundamental frequency. Duration
of vowels and semi-vowels was shown to increase with the noise level, while the duration of consonants
was observed to be shorter. Regarding the spectral contents, the proportion of high frequencies is
more important in Lombard speech, when compared to the neutral condition [5]. This is reflected
by a weaker average spectral tilt as the noise increases [4], [8]. Finally the formant frequencies were
observed to be reorganized in the F1 − F2 plane [4], [5]. While F1 was shown to increase in noisy
conditions, no general rule were noticed for F2. In any of these studies, modifications were observed
to be dependent on the noise type and level, as well as the considered speaker who may adapt its
speaking style more or less strongly.

Among all these works, no one reported studies based on features related to the glottal flow (at
the exception of the widely used fundamental frequency). However, it is expected that, during the
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production of speech in noise, the vocal folds work in a way different from their normal behaviour
in silent conditions. Indeed, significant differences in the glottal source have already been observed
between various phonation types [10]. To the best of our knowledge, only one study investigated the
information extracted from the excitation for analyzing Lombard speech [11]. In that study, authors
inspected the changes present in two signals: 1) a zero-frequency filtered signal, 2) the LP residual
signal. Although these two signals are informative about the excitation of the vocal tract, they do not
correspond to the actual glottal flow produced by the vocal folds.

This section focuses on the analysis of the Lombard speech based on features extracted from the
glottal flow. This signal corresponds to the airflow arising from the trachea and modulated by the
vocal folds, and is then motivated by physiological considerations. In Section 9.2.2 the methods for
glottal flow estimation and parametrization are described. Section 9.2.3 then presents the results of
our experiments led on a large database containing an important number of speakers, noise types and
levels.

9.2.2 Glottal Flow Estimation and Characterization

In this section, the glottal flow is estimated using the Closed Phase Inverse Filtering (CPIF) technique
described in Section 6.2.1. Our choice for CPIF is motivated by the fact that it gave in Chapter 6
good results on real speech, and that it showed interesting robustness properties which are required
here since recordings used for our experiments in Section 9.2.3 are not of very high quality.

As a reminder (see Section 6.2.1), this method is based on a Discrete All Pole (DAP, [12]) inverse
filtering process estimated during the closed phase. The closed phase period is determined using the
Glottal Opening and Closure Instants (GOIs and GCIs) located by the SEDREAMS algorithm detailed
in Chapter 3 (or [13]). For high-pitched voices, two analysis windows were used as suggested in [14],
[15] and [16]. As speech signals sampled at 16 kHz are considered in the following, the order for DAP
analysis is fixed to 18 (=Fs/1000 + 2, as commonly used in the literature).

Once the glottal flow has been estimated, each glottal cycle is characterized by the following
features: the Normalized Amplitude Quotient (NAQ) and the Quasi Open Quotient (QOQ) in the
time domain; and the H1-H2 ratio and the Harmonic Richness Factor (HRF) in the spectral domain.
These four parameters have been described in Section 4.3. In this study, these features were extracted
with the TKK Aparat toolkit freely available in [17]. Besides, since the fundamental frequency has
been extensively used in the literature ([4], [7], [8]), pitch is estimated using the Snack Sound Toolkit
[18].

Finally, as a last feature related to the glottal behaviour, an averaged spectrum is computed for
characterizing the utterances of a speaker in given recording conditions (i.e for a given noise type and
level). Note that the use of a long-term averaged spectrum for characterizing speech is not a new
idea [19]. In this work, this is achieved in a way inspired from the technique described in [8]. Voiced
regions of speech are isolated and nasal segments are removed. For each resulting frame, the amplitude
spectrum is computed. Periodograms are then averaged. This averaged magnitude spectrum then
contains a mix of the average glottal and vocal tract contributions. If the dataset is sufficiently large
and phonetically balanced, formants tend in average to cancel each other. An example of averaged
spectrum for a male speaker and for three recording conditions is exhibited in Figure 9.1. Since these
spectra were computed for the same speaker, it is reasonable to think that the main difference between
them is due to the spectral tilt of the glottal flow regarding the phonation mode. In this way, it can
be noticed from Figure 9.1 that the high-frequency contents becomes more important as the noise
level increases. This confirms the conclusions about the spectral tilt drawn in [4] and [8]. In order to
characterize the content of the averaged spectrum S(f), the following ratios of energy are defined:
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E2−1 =

∫ 3000
1000 |S(f)|2df
∫ 1000
0 |S(f)|2df

, E3−1 =

∫ 8000
3000 |S(f)|2df
∫ 1000
0 |S(f)|2df

.

The division according to these 3 subbands arises from the observation of Figure 9.1 where the
distinction between these 3 spectral regions is well marked.

Figure 9.1 - Averaged spectrum for a male speaker uttering in a silent environment, or with a factory
noise of 76 dB and 84 dB.

9.2.3 Experiments

Database

The database used in this study was first designed by the Multitel research center in order to develop
robust speech recognition systems1. It consists of speech uttered by 25 speakers (11 females and 14
males). For recordings in clean conditions, the dataset consists of about 350 phonetically balanced
sentences, and 57 sequences of words and numbers. For Lombard speech, four types of noise (car,
crowd, factory and pop music noises) with two levels (76 and 84 dB-SPL (Sound Pressure Level)) were
used. For the noisy conditions, only the 57 sequences of words and numbers were recorded. The speech
signals were captured by a close-talk microphone and sampled at 16kHz.

Results

For all recordings, the glottal flow is estimated and characterized as described in Section 9.2.2. Among
these parameters, the fundamental frequency F0 has been extensively used in the literature. An exam-
ple of F0 distribution for a given male speaker is displayed in Figure 9.2 for both normal and Lombard
speech. A clear increase of pitch is noticed as the noise level becomes stronger. This observation
corroborates the conclusions drawn in [4], [7] or [8].

Regarding the features characterizing the glottal waveform both in time and frequency domains,
Figure 9.3 exhibits their histograms for the same male speaker. Also maybe less marked than for the
F0 distribution with this speaker, significant differences in the histograms of the glottal features can
be nevertheless observed. In this way, Lombard speech is characterized by a clear drop of NAQ, QOQ
and H1−H2 parameters, while the Harmonic Richness Factor HRF is increased. These modifications

1Many thanks to Multitel ASBL for providing the database.
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Figure 9.2 - Pitch distribution for a given male speaker uttering in clean and noisy conditions. For
this example, a factory noise at 76 and 84 dB was used.

are mainly due to the stronger vocal effort in Lombard speech, and are in line with the study of the
pressed phonation type ([20], [21]).

According to the evolution of the spectral features (H1−H2 and HRF ), the content of the glottal
spectrum is shown to present more high-frequency energy in Lombard speech. Indeed, in Lombard
speech, the amplitude levels between the two first glottal harmonics becomes less important, and the
amount of harmonics in the whole glottal spectrum gets richer. On the other hand, the evolution of
the time-domain features NAQ and QOQ is difficult to interpret intuitively. To give an idea of their
impact, Figure 9.4 displays the glottal open phase according to the LF model [22], for normal and
Lombard speech, taking the mean values of NAQ and QOQ from Figure 9.3(a) and (b). Indeed these
two parameters are known to control the shape of the glottal open phase. Differences in the glottal
waveforms are observed in Figure 9.4, mainly in the rapidity of the open phase time response.

Figure 9.3 - Distributions, for a given male speaker uttering in a quiet environment or in noisy
conditions (with a factory noise at 76 and 84 dB), of the following glottal features: (a): the Normalized
Amplitude Quotient NAQ, (b): the Quasi-Open Quotient QOQ, (c): the ratio of the amplitudes at the
two first harmonics H1−H2, (d): the Harmonic Richness Factor HRF .
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Figure 9.4 - Illustration of the differences in the glottal open phase according to the LF model for
normal and Lombard speech.

Table 9.1 sums up the modifications of glottal features when speech is produced in silent or noisy
environments. These results are averaged for the 25 speakers of the database and detailed in the table
according to the noise type and level. Unformally we observed that all speakers tend to modify their
glottal source in the same fashion, although these changes were more important for some speakers than
for others. Regarding the features extracted from the glottal flow, it turns out that the noise types
leading to the strongest modifications are (by order of increasing changes): the music, crowd, car and
factory noises. Besides important variations of NAQ from normal to Lombard speech can be noted (up
to 26% in the factory noise at 84dB). As expected ([4], [7], [8]), it is also observed that speakers tend
to increase F0 in Lombard speech. Finally, regarding the spectral balances E2−1 and E3−1 defined as in
Section 9.2.2, it can be concluded that speakers produce a higher amount of high-frequency in Lombard
speech, confirming the results from [4], [8] and [5]. Among others, the energy in the [1kHz − 3kHz]
is particularly increased. One possible reason for this is that speakers (maybe unconsciously via their
own auditory feedback) aim at enhancing their intelligibility by increasing the SNR where the human
ear is the most sensitive.

9.3 Analysis of Hypo and Hyperarticulated Speech

9.3.1 Hypo and Hyperarticulated Speech

This section focuses on the study of different speech styles, based on the degree of articulation: neutral
speech, hypoarticulated (or casual) and hyperarticulated speech (or clear speech). It is worth noting
that these three modes of expressivity are neutral on the emotional point of view, but can vary amongst
speakers, as reported in [23]. The influence of emotion on the articulation degree has been studied in
[24], [25] and is out of the scope of this section.

The "H and H" theory [26] proposes two degrees of articulation of speech: hyperarticulated speech,
for which speech clarity tends to be maximized, and hypoarticulated speech, where the speech signal
is produced with minimal efforts. Therefore the degree of articulation provides information on the
motivation/personality of the speaker vs the listeners [23]. Speakers can adopt a speaking style that
allows them to be understood more easily in difficult communication situations.

The degree of articulation is influenced by the phonetic context, the speech rate and the spectral
dynamics (vocal tract rate of change, [23]). The common measure of the degree of articulation consists
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in defining formant targets for each phone, taking coarticulation into account, and studying the differ-
ences between the real observations and the targets versus the speech rate. Because defining formant
targets is not an easy task, Beller proposed in [23] a statistical measure of the degree of articulation
by studying the joint evolution of the vocalic triangle area and the speech rate.

The goal of this study is to have a better understanding of the specific acoustic characteristics gov-
erning hypo and hyperarticulated speech. Section 9.3.2 presents the database which has been created
for this study. Modifications are studied in Section 9.3.3 as a function of the degree of articulation.
The acoustic analysis highlights evidence of both vocal tract and glottal characteristics changes. Note
that a more complete study including a phonetic analysis and the integration of these changes in speech
synthesis based on Hidden Markov Models (HMMs) is given in [27].

9.3.2 Database with various Degrees of Articulation

For the purpose of our research, a new French database was recorded by a professional male speaker,
aged 25 and native Belgian French speaking. The database contains three separate sets, each set corre-
sponding to one degree of articulation (neutral, hypo and hyperarticulated). For each set, the speaker
was asked to pronounce the same 1359 phonetically balanced sentences, as neutrally as possible from
the emotional point of view. A headset was provided to the speaker for both hypo and hyperarticulated
recordings, in order to induce him to speak naturally while modifying his articulation degree.

While recording hyperarticulated speech, the speaker was listening to a version of his voice modified
by a "Cathedral" effect. This effect produces a lot of reverberations (as in a real cathedral), forcing
the speaker to talk slowlier and as clearly as possible (producing more efforts to produce speech). In
contrast, while recording hypoarticulated speech, the speaker was listening to an amplified version of
his own voice. This effect produced the impression of talking very close to someone in a narrow envi-
ronment, allowing the speaker to talk faster and less clearly (making less efforts to produce speech).
Proceeding that way allowed us to create a "standard recording protocol" to obtain repeatable con-
ditions if required in the future. It also avoided the data from being dependent on some subjective
understanding of what "hyper" and "hypo" articulation actually is.

9.3.3 Acoustic Analysis of Hypo and Hyperarticulated Speech

Acoustic modifications in expressive speech have been extensively studied in the literature [28], [29],
[30]. In the frame of this study, one can expect important changes related to the vocal tract function.
Indeed, during the production of hypo and hyperarticulated speech, the articulatory strategy adopted
by the speaker may dramatically vary. Although it is still not clear whether these modifications consist
of a reorganization of the articulatory movements, or of a reduction/amplification of the normal ones,
speakers generally tend to consistently change their way of articulating. According to the "H and H"
theory [26], speakers minimize their articulatory trajectories in hypoarticulated speech, resulting in a
low intelligibility, while an opposite strategy is adopted in hyperarticulated speech. As a consequence,
the vocal tract configurations may be strongly affected. The resulting changes are studied in Section
9.3.3.

In addition, the produced voice quality is also altered. Since voice quality variations are mainly
considered to be controlled by the glottal source [30], Section 9.3.3 focuses on the modifications of
glottal characteristics with regard to the degree of articulation.
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Vocal Tract-based Modifications

In order to study the variations of the vocal tract resonances, the evolution of the vocalic triangle
[23] with the degree of articulation is analyzed. This triangle consists of the three vowels /a/, /i/
and /u/ represented in the space of the two first formant frequencies F1 and F2 (here estimated via
Wavesurfer [31]). For the three degrees of articulation, the vocalic triangle is displayed in Figure 9.5
for the original sentences. For information, ellipses of dispersion are also indicated on these plots. The
first main conclusion is the significant reduction of the vocalic space as speech becomes less articulated.
Indeed, as the articulatory trajectories are less marked, the resulting acoustic targets are less separated
in the vocalic space. This may partially explain the lowest intelligibility in hypoarticulated speech.
On the contrary, the enhanced acoustic contrast is the result of the efforts of the speaker under
hyperarticulation. These changes of vocalic space are summarized in Table 9.2, which presents the
area defined by the average vocalic triangles.
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Figure 9.5 - Vocalic triangle, for the three degrees of articulation. Dispersion ellipses are also indi-
cated.

Dataset Hyper Neutral Hypo

Original 0.285 0.208 0.065

Table 9.2 - Vocalic space (in kHz2) for the three degrees of articulation.

Inspecting the ellipses, it is observed that dispersion can be high for the vowel /u/, while data is
relatively well concentrated for /a/ and /i/.

Glottal-based Modifications

As the most important perceptual glottal feature, pitch histograms are displayed in Figure 9.6. It is
clearly noted that the more speech is articulated, the higher the fundamental frequency. Besides these
prosodic modifications, we investigate how characteristics of the glottal flow are affected. In a first
part, the glottal source is estimated by the Complex Cepstrum-based Decomposition algorithm (CCD)
presented in Section 5.3.2 (or [32]). This method was shown in Chapter 5 to be the best performing
technique of glottal flow estimation on high-quality recordings. Using this approach, Figure 9.7 shows
the averaged magnitude spectrum of the glottal source for the three degrees of articulation. First of
all, a strong similarity of these spectra with models of the glottal source (such as the LF model [22])
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can be noticed. Secondly it turns out that a high degree of articulation is reflected by a glottal flow
containing a greater amount of high frequencies. Finally, it is also observed that the glottal formant
frequency increases with the degree of articulation (see the zoom in the top right corner of Figure
9.7). In other words, the time response of the glottis open phase turns to be faster in hyperarticulated
speech.
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Figure 9.6 - Pitch histograms for the three degrees of articulation.

Figure 9.7 - Averaged magnitude spectrum of the glottal source for the three degrees of articulation.

In a second part, the maximum voiced frequency is analyzed. In some approaches, such as the
Harmonic plus Noise Model (HNM, [33]) or the Deterministic plus Stochastic Model of the residual
signal (DSM, see Chapter 11 or [34]), the speech signal is considered to be modeled by a non-periodic
component beyond a given frequency. This maximum voiced frequency (Fm) demarcates the boundary
between two distinct spectral bands, where respectively an harmonic and a stochastic modeling (related
to the turbulences of the glottal airflow) are supposed to hold. In this paper, Fm was estimated using
the algorithm described in [33]. The corresponding histograms are illustrated in Figure 9.8 for the
three degrees of articulation. It can be noticed from this figure that the more speech is articulated,
the higher the Fm, the stronger the harmonicity, and consequently the weaker the presence of noise
in speech. Note that the average values of Fm are respectively of 4215 Hz, 3950 Hz (confirming our
choice of 4 kHz in [34]) and 3810 Hz for the three degrees of articulation.
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Figure 9.8 - Histograms of the maximum voiced frequency for the three degrees of articulation.

9.4 Conclusion

The goal of this chapter was to confirm and quantify, on large corpora, how the glottal source is modified
during the production of expressive speech. First, we focused on the glottal analysis of Lombard speech.
For this, the glottal flow was estimated by a closed phase inverse filtering process and characterized
by a set of time and spectral features. Through an analysis on a database containing 25 speakers
talking in quiet and noisy environments (with 4 noise types at 2 levels), it was shown that the glottal
source is considerably modified in Lombard speech. These variations have to be taken into account
in applications such as speech or speaker recognition systems. Moreover the results presented in this
study could be turned into advantage by integrating them in a parametric speech synthesizer based on a
source-filter model. It is indeed expected that this approach should enhance the delivered intelligibility
by adapting the voice quality. In a second time, speech with various degrees of articulation has been
studied. A new French database matching our needs was created, composed of three identical sets,
pronounced with three different degrees of articulation (neutral, hypo and hyperarticulated speech).
The acoustic analysis investigated changes related to the vocal tract as well as to the glottis. It
was shown that hyperarticulated speech is characterized by a larger vocalic space (more efforts to
produce speech, with maximum clarity), higher fundamental frequency, a glottal flow containing a
greater amount of high frequencies and an increased glottal formant frequency. Conclusions drawn
in this chapter are of interest for being applied in applications such as expressive/emotional speech
recognition/labeling or synthesis.
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Chapter 10

Conclusion on the Glottal Flow

Estimation and its Applications

Part II has focused on the problem of the automatic estimation of the glottal flow directly from
the speech waveform, emphasizing some of its potential applications. The main difficulty with this
issue is the unavailability of any ground truth reference, since neither the vocal tract nor the glottal
contribution are observable. This makes the problem a typical case of blind separation, which also
implies that no quantitative assessment of the performance of glottal source estimation techniques is
possible on natural speech. The main contributions of Part II are the following:

• Chapter 5 provided a complete theoretical framework for mixed-phase (or causal-anticausal)
separation. A new algorithm relying on a Complex Cepstrum-based Decomposition (CCD) was
proposed. This technique was shown to be functionally equivalent but much faster than an
existing method for mixed-phase deconvolution based on the Zeros of the Z-Transform (ZZT),
which is advantageous for the design of real-time applications. Effects of windowing on the quality
of the mixed-phase separation were studied on synthetic signals and a set of optimal constraints
on the window to apply was derived. Relying on these conclusions, it was shown, on both
synthetic and real speech signals, that the proposed Complex Cepstrum-based Decomposition
can be effectively used for glottal flow estimation.

• Chapter 6 aimed at providing a review and quantitative evaluation of the main state-of-the-art
glottal flow estimation techniques. The effectiveness of the CCD method proposed in Chapter 5
was compared to two other well-known techniques of glottal source estimation, representatives
of the main approaches to this problem: the Closed Phase Inverse Filtering (CPIF) and the
Iterative Adaptive Inverse Filtering (IAIF) methods. The robustness and influence of various
factors on the estimation were first studied on synthetic signals. In clean conditions, CCD was
the best performing method, while CPIF also led to an efficient parametrization of the glottal
flow. Although achieving the worst results in high-quality recordings, IAIF turned out to be the
most robust technique, outperforming other approaches for Signal-to-Noise Ratio (SNR) below 40
dB. A slight degradation was observed with an increasing fundamental frequency, and decreasing
first formant frequency. In a second time, experiments were performed on a large corpus of
expressive speech. The separability of three voice qualities was considered as a measure of the
ability of the methods to discriminate different phonation types. It was shown that CCD, and
CPIF in a lesser extent, are the best methods. It was also discussed which features are the best
suited for revealing differences of voice quality.
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• Chapter 7 extended the formalism of mixed-phase decomposition to chirp analysis. This allowed
to remove the constraint of being synchronized on a Glottal Closure Instant (GCI), as required
in the traditional approach introduced in Chapter 5. An automatic technique for determining
the optimal chirp contour for both the CCD and ZZT methods was proposed. The resulting
technique was shown to perform an efficient estimation of the glottal flow, while presenting the
advantage of operating asynchronously as it is done in usual speech processing systems.

• Chapter 8 investigated the use of features related to the glottis for the automatic detection of voice
pathologies. First we focused on the discrimination power and redundancy of vocal tract-based,
glottal and prosodic features. Their assessment relied on measures derived from Information
Theory. This allowed an objective evaluation, independently of any subsequent classifier. Some
of the proposed glottal features were observed to be particularly relevant for detecting voice
disorders. It was also shown that glottal characteristics exhibit an interesting complementarity
with other types of features. Secondly the potential of using phase-based features for detecting
voice pathologies was explored. It was shown that representations based on group delay functions
are particularly suited for capturing irregularities in the speech signal. The adequacy of the
mixed-phase model during the voice production was discussed and shown to convey relevant
information. The efficiency of the proposed phase-based features was explained by their higher
sensitivity to turbulences during the phonation process.

• Chapter 9 focused on glottal-based analysis of expressive voices. Two particular modes of ex-
pressivity were studied: Lombard speech and hypo or hyperarticulated speech. We analyzed
how the glottal behaviour is modified in Lombard speech as a function of the type and level
of noise. We then investigated how vocal tract-based and glottal characteristics are affected
during the production of speech with various degrees of articulation (i.e with various efforts of
pronunciation).
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Part III

The Deterministic plus Stochastic Model

of the Residual Signal and its Applications
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Chapter 11

The Deterministic plus Stochastic Model

of the Residual Signal
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Abstract

The modeling of speech production often relies on a source-filter approach. Although
methods parameterizing the filter have nowadays reached a certain maturity, there is still
a lot to be gained for several speech processing applications in finding an appropriate
excitation model. This chapter presents a Deterministic plus Stochastic Model (DSM) of
the residual signal. The DSM consists of two contributions acting in two distinct spectral
bands delimited by a maximum voiced frequency. Both components are extracted from an
analysis led on a speaker-dependent dataset of pitch-synchronous residual frames. The
deterministic part models the low-frequency contents and arises from an orthonormal
decomposition of these frames. As for the stochastic component, it is a high-frequency
noise modulated both in time and frequency. Some interesting phonetic and computa-
tional properties of the DSM are also highlighted. The applicability of the DSM in speech
synthesis and speaker recognition is respectively studied in Chapters 12 and 13.

This chapter is based upon the following publications:

• Thomas Drugman, Geoffrey Wilfart, Thierry Dutoit, A Deterministic plus Stochastic Model of
the Residual Signal for Improved Parametric Speech Synthesis, Interspeech Conference, Brighton,
U.K, 2009 [ISCA Best Student Paper award].

• Thomas Drugman, Thierry Dutoit, The Deterministic plus Stochastic Model of the Residual
Signal and its Applications, IEEE Transactions on Audio, Speech and Language Processing,
Accepted for publication.

Many thanks to Geoffrey Wilfart for his helpful discussions.
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11.1 Introduction

In speech processing, the modeling of the speech signal is generally based on a source-filter approach
[1]. In such an approach, the source refers to the excitation signal produced by the vocal folds at the
glottis, while the filtering operation refers to the action of the vocal tract cavities. In several speech
processing applications, separating these two contributions is important as it could lead to their distinct
characterization and modeling. The actual excitation signal is the airflow arising from the trachea and
passing through the vocal folds, and is called the glottal flow [1]. Its estimation, parametrization and
applicability have been studied all troughout Part II. However, it has been emphasized that glottal
flow estimation directly from the speech waveform is a typical blind separation problem since neither
the glottal nor the vocal tract contributions are observable.

This makes the glottal flow estimation a complex issue [2], and explains why it is generally avoided
in usual speech processing systems. For this reason, it is generally preferred to consider, for the filter,
the contribution of the spectral envelope of the speech signal, and for the source, the residual signal
obtained by inverse filtering. Although not exactly motivated by a physiological interpretation, this
approach has the advantage of being more practical while giving a sufficiently good approximation to
the actual deconvolution problem.

Methods parameterizing the spectral envelope such as the well-known LPC or MFCC-like features
[3], are widely used in almost every field of speech processing. On the contrary, methods modeling the
excitation signal are still not well established and there might be a lot to be gained by incorporating
such a modeling in several speech processing applications.

The goal of this chapter is to propose a Deterministic plus Stochastic Model (DSM) of the residual
signal. The usefulness of this model both speech synthesis and speaker recognition will be shown
respectively in Chapters 12 and 13. The proposed DSM of the residual signal results from an analysis
led on a speaker-dependent set of residual frames that are synchronous with a Glottal Closure Instant
(GCI) and whose length is set to two pitch periods (see Section 11.2). This process is required for
matching residual frames so that they are suited for a common modeling. Each residual frame r(t)
is modeled as the sum of two components: i) a low-frequency deterministic component rd(t), based
on a Principal Component Ananlysis (PCA) decomposition and detailed in Section 11.4, and ii) a
high-frequency modulated noise component rs(t) described in Section 11.5. These two components
are separated in the spectral domain by a particular frequency called maximum voiced frequency, as
explained in Section 11.3. Finally, two important properties of the DSM, namely speed of convergence
and phonetic independence, are respectively discussed in Sections 11.6 and 11.7. Finally, Section 11.8
concludes this chapter.

11.2 A Dataset of Pitch-Synchronous Residual Frames

The workflow for obtaining pitch-synchronous residual frames is presented in Figure 11.1. For this,
a speaker-dependent speech database is analyzed. First the locations of the Glottal Closure Instants
(GCIs) are estimated from the speech waveform using the SEDREAMS algorithm proposed in Section
3.3 (or [4]). GCIs refer to the instants of significant excitation of the vocal tract. These particular time
events correspond to the moments of high energy in the glottal signal during voiced speech. In our
process, GCI positions are used as anchor points for synchronizing residual frames. In parallel, a Mel-
Generalized Cepstral (MGC) analysis is performed on the speech signals, as these features have shown
their efficiency to capture the spectral envelope [3]. As recommended in [5], we used the parameter
values α = 0.42 (Fs = 16kHz) and γ = −1/3 for MGC extraction. In this paper, we opted for the
MGCs as they are widely used in speech synthesis [5], albeit other filter coefficients could be used
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as an alternative. Residual signals are then obtained by inverse filtering. Pitch-synchronous residual
frames are finally isolated by applying a GCI-centered, two-pitch-period long Blackman windowing.
The resulting dataset serves as a basis for extracting the components of the proposed DSM of the
residual signal, as explained in the following sections.
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Figure 11.1 - Workflow for obtaining the pitch-synchronous residual frames.

11.3 The Maximum Voiced Frequency

As previously mentioned, the DSM consists of the superposition of a deterministic rd(t) and a stochastic
rs(t) component of the residual signal r(t). In this model, similarly to what is done in the Harmonic plus
Noise Model (HNM, [6]), these two contributions are supposed to hold in two distinct spectral bands.
The boundary frequency between these two spectral regions is called the maximum voiced frequency,
and will be denoted Fm in the following. Some methods have already been proposed for estimating
Fm from the speech waveform [6], [7]. Figure 11.2 illustrates the distribution of Fm estimated by
the technique described in [6] for three voice qualities (loud, modal and soft) produced by the same
German female speaker. For this example, we used the De7 database originally designed for creating
diphone databases for expressive speech synthesis [8]. A first conclusion drawn from this figure is
that significant differences between the distributions are observed. More precisely, it turns out that,
in general, the soft voice has a low Fm (as a result of its breathy quality) and that the stronger the
vocal effort, the more harmonicity in the speech signal, and consequently the higher Fm. However, it
is worth noting that, although statistical differences are observed, obtaining a reliable trajectory of Fm

for a given utterance is a difficult problem [9]. For this reason, as it is done in [9] or [10], we prefer
in this work to consider a fixed value of Fm for a given speaker with a given voice quality. Therefore,
we use in the rest of this paper the mean value of Fm extracted on a given dataset. Regarding the
example of Figure 11.2, this leads to Fm = 4600 Hz for the loud, 3990 Hz for the modal, and 2460 Hz
for the soft voice.

11.4 Modeling of the Deterministic Component

In order to model the low-frequency contents of the pitch-synchronous residual frames (extracted as
explained in Section 11.2), it is proposed to decompose them on an orthonormal basis obtained by
Principal Component Analysis (PCA, [11]). Preliminarily to this, the residual frames are normalized
in prosody as exposed in Figure 11.3, i.e they are normalized both in pitch period and energy. This step
ensures the coherence of the dataset before applying PCA. Note that, assuming the residual signal as
an approximation of the glottal source, resampling the residual frames by interpolation or decimation
should preserve their shape and consequently their most important glottal features (such as the open
quotient or the asymmetry coefficient [12]).

It is worth noticing that, for speech synthesis purpose, particular care has to be taken when
choosing the number of points for length normalization. Indeed, in order to avoid the appearance of
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Figure 11.2 - Histogram of the maximum voiced frequency Fm for the same female speaker with three
different voice qualities.
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Figure 11.3 - Workflow for obtaining the dataset for the deterministic modeling.

energy holes at synthesis time (occuring if the useful band of the deterministic part does not reach Fm

after pitch denormalization, see Section 12.2), the pitch value F ∗
0 for the normalization has to respect

the condition:

F ∗
0 ≤

FN

Fm
· F0,min (11.1)

where FN and F0,min respectively denote the Nyquist frequency and the minimum pitch value for
the considered speaker.

PCA can now be calculated on the resulting dataset, allowing dimensionality reduction and feature
decorrelation. PCA is an orthogonal linear transformation which applies a rotation of the axis system
so as to obtain the best representation of the input data, in the Least Squared (LS) sense [11]. It can be
shown that the LS criterion is equivalent to maximizing the data dispersion along the new axes. PCA
can then be achieved by calculating the eigenvalues and eigenvectors of the data covariance matrix
[11].

Let us assume that the dataset consists of N residual frames of m samples. PCA computation
will lead to m eigenvalues λi with their corresponding eigenvectors µi (here called eigenresiduals). λi

is known to represent the data dispersion along axis µi [11]. Using the k first eigenresiduals (with
k ≤ m), the Cumulative Relative Dispersion (CRD) is defined as:

CRD(k) =

∑k
i=1 λi

∑m
i=1 λi

, (11.2)

and is a relative measure of the dispersion covered over the dataset using these k eigenresiduals.
Figure 11.4 displays a typical evolution of this variable for a given male speaker (Fs=16kHz, m=280
and thus F ∗

0 =114Hz for this example). It is observed that PCA allows a high dimensionality reduction
since very few eigenresiduals are sufficient to cover the greatest amount of dispersion.
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Figure 11.4 - Evolution of the Cumulative Relative Dispersion (CRD) as a function of the number of
eigenresiduals for a given male speaker.

It is worth noting here that the eigenresiduals of highest orders contribute mainly to the recon-
struction of the high-frequency contents of the residual frames. In practice, we observed that, with the
usual value of Fm/FN , the use of only the first eigenresidual (whose relative dispersion is of 46% in the
example of Figure 11.4) is sufficient for a good modeling below Fm, and that the effect of higher order
eigenresiduals is almost negligible in that spectral band. Since its importance on the spectral contents
below Fm is predominant, and as it will be confirmed in the applicative parts (Chapters 12 and 13), the
first eigenresidual µ1(n) (just called eigenresidual for the sake of conciseness in the following) can be
considered to model the deterministic component of the DSM. To illustrate what this waveform looks
like, Figure 11.5 shows the first eigenresidual for the same speaker as in Figure 11.4. It is interesting to
note the strong similarity with the glottal flow derivative waveform used in many glottal flow models
(such as the LF model [13]), mainly during the glottal open phase, and the clear discontinuity at the
GCI position. However it is worth noticing that the first eigenresidual is a modeling of the residual
signal, and not of the glottal source. Nonetheless, the residual signal conveys information about the
glottal behaviour, which turns out to be reflected in the first eigenresidual shape.
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Figure 11.5 - Illustration of the first eigenresidual µ1(n) for a given male speaker.
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11.5 Modeling of the Stochastic Component

In the proposed DSM of the residual signal r(t), the stochastic modeling rs(t) is similar to the noise
part in the HNM [6]. It corresponds to a white Gaussian noise n(t) convolved with an auto-regressive
model h(t), and whose time structure is controled by an energy envelope e(t):

rs(t) = e(t) · [h(t) ⋆ n(t)]. (11.3)

The use of h(t) and e(t) is required to account respectively for the spectral and temporal modu-
lations of the high-frequency contents of the residual. In order to estimate these two contributions,
the dataset of pitch-synchronous residual frames (as extracted in Section 11.2) is considered, and the
modifications exhibited in Figure 11.6 are brought to it. More precisely, frames are normalized in
energy and only their contents beyond Fm is kept. On the resulting dataset, h(t) is estimated as the
Linear Predictive modeling of their averaged amplitude spectrum. Indeed, since Fm has been fixed
and since the residual spectral envelope is almost flat over the whole frequency range, it is reasonable
to consider that h(t) has fairly the same effect on all frames: it acts as a high-pass filter beyond
Fm. As for the energy envelope e(t), it is determined as the average Hilbert envelope of the resulting
high-filtered residual frames resampled to the normalized pitch value F ∗

0 . Note that several envelopes
were studied in [10] for modeling the temporal characteristics of noise in the context of HNM and for
analysis-synthesis purpose. The Hilbert envelope was shown to be one of the most appropriate for this
purpose.
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Figure 11.6 - Workflow for obtaining the dataset for the stochastic modeling.

11.6 Speed of Convergence

The proposed DSM of the residual signal makes use of two important waveforms: the eigenresidual
µ1(n) for the deterministic part, and the energy envelope e(n) of the stochastic component. In order
to estimate how much data is required for having a reliable estimation of these two signals, the male
speaker AWB from the CMU ARCTIC database [14] was analyzed. This database contains about
50 minutes of speech recorded for Text-to-Speech purpose. The two reference waveforms were first
computed on a large dataset containing about 150.000 pitch-synchronous residual frames. An additional
estimation of these waveforms was then obtained by repeating the same operation on a held out dataset
for the same speaker. The Relative Time Squared Error (RTSE) is used for both waveforms as a
distance between the estimation xest(n) and the reference xref (n) signals (where m is the number of
points used for pitch normalization):

RTSE =

∑m
n=1 (xest(n)− xref (n))

2

∑m
n=1 xref (n)

2
(11.4)

Figure 11.7 displays the evolution of this measure (in logarithmic scale) with the size of the held
out dataset. It may be observed that both estimations quickly converge towards the reference. From
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this graph, it can be considered that a dataset containing around 1000 residual frames is sufficient for
obtaining a correct estimation of both the deterministic and stochastic components of the DSM. To
give an idea, this corresponds to about 7s of voiced speech for a male speaker, and about 4 s for a
female voice.
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Figure 11.7 - Speed of convergence for the eigenresidual and the energy envelope.

11.7 Phonetic Independence

In the proposed DSM of the residual signal, the same modeling is used for any voiced segment. In other
words, the same waveforms (eigenresidual or energy envelope) are used for the excitation of all voiced
phonetic classes. In order to assess the validity of this assumption, the speaker AWB from the CMU
ARCTIC database [14] was also analyzed. On the whole set A (first half) of this database, a reference
eigenresidual was extracted. On dataset B (second half), sentences were segmented into phonetic
classes, and for each class containing more than 1000 voiced frames (as suggested from Section 11.6
for obtaining a reliable estimation), the corresponding class-dependent eigenresidual was calculated.

Phonetic Class aa ae ah ao aw ax ay eh er ey ih
RTSE 0.73 0.72 0.52 0.74 0.46 0.66 0.56 0.59 0.90 0.68 0.29

Phonetic Class iy l m n ng ow oy r uw w y
RTSE 0.93 0.91 5.31 3.68 1.53 0.38 0.85 2.89 0.91 2.48 2.00

Table 11.1 - Relative Time Squared Error (%) between the reference and the class-dependent eigen-
residuals.

Table 11.1 presents the values (in %) of the RTSE between the reference and the class-dependent
eigenresiduals. It can be noticed that for most phonetic classes (16 out of the 22 cases), the RTSE is
lower than 1% (which is, as seen in Figure 11.7, of the order of the estimation error). The difference
with the reference eigenresidual is the highest for the nasalized consonants (/m/ and /n/). This may be
explained by the difficulty in modeling the anti-formants of the vocal tract for such sounds. To illustrate
the resulting differences, Figure 11.8 shows the reference eigenresidual and the one extracted for the
phonetic class /m/ (for which the RTSE is the highest). It can be noticed that the main dissimilarities
occur at the right of the GCI, while the left parts are almost identical. Indeed, according to the mixed-
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phase model of speech [15], during the production of the speech signal, the response at the left of the
GCI is dominated by the open phase of the glottal excitation, while the response at its right is mainly
dominated by the vocal tract impulse response. After inverse filtering, the dissimilarities at the right
of the GCI might then be explained by an imperfect modeling of the vocal tract transmittance for the
phoneme /m/.

Nonetheless, since the results of Table 11.1 suggest that a fairly identical eigenresidual is extracted
for the great majority of the voiced phonetic classes (and that for other classes, the difference is still
relatively small), and given in addition that our informal attempts of incorporating a class-dependent
modeling in analysis-synthesis led to no audible differences, the assumption of using a common modeling
independent of the phonetic context can be supposed to hold in the rest of this paper.
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Figure 11.8 - Waveforms of the reference eigenresidual and the one extracted on the phonetic class
/m/.

11.8 Conclusion

This chapter presented a new excitation model: the Deterministic plus Stochastic Model (DSM) of
the residual signal. The DSM estimation is performed by automatic analysis of a speaker-dependent
dataset of pitch-synchronous residual frames. These frames are modeled by two components acting in
two distinct spectral bands: the deterministic and the stochastic components. The frequency demar-
cating the boundary between these two spectral regions is called the maximum voiced frequency. The
low-frequency deterministic part consists of a decomposition on an orthonormal basis obtained by Prin-
cipal Component Analysis. As for the high-frequency stochastic component, it is a noise modulated
both in time and frequency. After a detailed description of the underlying theoretical framework, some
computational and phonetic considerations were examined. It was proved that a speaker-dependent
dataset of around 1000 voiced frames is sufficient for having a reliable estimation of the DSM com-
ponents. It was also shown that the assumption of considering a common excitation modeling for all
phonetic classes is valid. The applicability of the proposed DSM will be studied for two major fields
of speech processing: speech synthesis (Chapter 12) and speaker recognition (Chapter 13).
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APPLICATION OF DSM TO SPEECH SYNTHESIS

Abstract

The Deterministic plus Stochastic Model (DSM) of the residual signal has been presented
in Chapter 11 as a new excitation model. This chapter focuses on the use of the DSM
vocoder so as to improve the quality delivered by parametric speech synthesizers. The
resulting method is assessed within the frame of two applications: pitch modification in an
analysis-synthesis context, and Hidden Markov Model (HMM)-based speech synthesis.
The problem of pitch modification is first addressed as an important module for an
efficient voice transformation system. In that experiment, DSM is compared to three
well-known methods for this purpose: TDPSOLA, HNM and STRAIGHT. The four
methods are compared through an important subjective test. The influence of the speaker
gender and of the pitch modification ratio is analyzed. Despite its higher compression
level, the DSM technique is shown to give similar or better results than other methods,
especially for male speakers and important ratios of modification. The DSM turns out to
be only outperformed by STRAIGHT for female voices. In a second time, we incorporate
the DSM vocoder within a HMM-based speech synthesizer. In two subjective evaluations
involving a large number of listeners, DSM is compared to the traditional pulse excitation,
to the GPF and STRAIGHT methods. Results show that DSM significantly outperforms
the pulse and the GPF excitation for both male and female voices and that it provides
a quality equivalent to STRAIGHT. In addition, the proposed DSM technique requires
few computational load and memory, which is essential for its integration in commercial
applications.

This chapter is based upon the following publications:

• Thomas Drugman, Geoffrey Wilfart, Thierry Dutoit, A Deterministic plus Stochastic Model of
the Residual Signal for Improved Parametric Speech Synthesis, Interspeech Conference, Brighton,
U.K, 2009 [ISCA Best Student Paper award].

• Thomas Drugman, Thierry Dutoit, The Deterministic plus Stochastic Model of the Residual
Signal and its Applications, IEEE Transactions on Audio, Speech and Language Processing,
Accepted for publication.

• Thomas Drugman, Thierry Dutoit, A Comparative Evaluation of Pitch Modification Techniques,
18th European Signal Processing Conference, Aalborg, Denmark, 2010.

Many thanks to Geoffrey Wilfart for his helpful discussions.
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12.1 Introduction

Two text-to-speech technologies have clearly emerged these last years. On one hand, the Unit Selection
method [1] concatenates speech units picked up from a very large corpus, avoiding signal processing
manipulations as much as possible, in order to minimize segmental quality degradations. Its biggest
drawbacks lie in the difficulty of producing voice quality variations, required to produce expressive
speech, and in the limited voice modification/conversion that are allowed.

On the other hand, Statistical Parametric Speech Synthesis [2] models the speech signal in various
contextual situations. Synthesizers based on Hidden Markov Model (HMM) have thus recently gained
considerable attention for their flexibility, smoothness and small footprint [3]. Nevertheless their main
disadvantage is the quality of the produced speech, which exhibits the typical buzziness found in the
old Linear Predictive Coding (LPC)-based speech coders. While techniques for modeling the filter are
rather well-established, it is not the case for the source representation.

In order to overcome this hindrance, some works have proposed a more subtle excitation model,
enhancing in this way the final quality and naturalness. In the Codebook Excited Linear Predictive
(CELP) approach [4], the residual signal is constructed from a codebook containing several typical
excitation frames. In [5] we proposed the use of a codebook of pitch-synchronous residual frames to
construct the voiced excitation. The Multi Band Excitation (MBE) modeling [6] suggests to divide
the frequency axis in several bands, and a voiced/unvoiced decision is taken for each band at any
time. A process based on a Multi-Band Resynthesis pitch-synchronous OverLap-Add (MBROLA) of
the speech signal has been proposed in [7]. According to the Mixed Excitation (ME) approach [8],
the residual signal is the superposition of both a periodic and a non-periodic component. Various
models derived from the ME approach have been used in HMM-based speech synthesis [9], [10]. In [9],
Yoshimura et al. integrated a ME coding method. In this framework, the excitation is obtained using
a multi-band mixing model, containing both periodic and aperiodic contributions, and controled by
bandpass voicing strengths. In a similar way, Maia et al. [10] made use of high-order filters to obtain
these components, which were derived through a closed-loop procedure. A popular technique used in
parametric synthesis is the STRAIGHT vocoder [11]. STRAIGHT excitation relies on a ME model
weighting the periodic and noise components by making use of aperiodicity measurements of the speech
signal [11]. Some other techniques, such as [12] or [13], have incorporated excitation signals based on
the Liljencrants-Fant (LF) glottal flow model [14] into HMM-based synthesis. All these techniques
tend to relatively reduce the produced buzziness, and therefore improve the overall quality.

The goal of this chapter is to integrate the Deterministic plus Stochastic Model (DSM) of the
residual signal, as introduced in Chapter 11, into a parametric speech synthesizer and to evaluate its
performance. It can be expected that, if the excitation is appropriately modeled via the DSM, the
naturalness of the delivered voice will be enhanced. For this, the chapter is structured as follows.
Section 12.2 describes the vocoder relying on the DSM. The resulting coding technique is assessed
within the frame of two applications: pitch modification in an analysis-synthesis context (Section 12.3),
and HMM-based speech synthesis (Section 12.4). For each of these two applications, the performance
of DSM is assessed via a subjective test involving a large number of listeners and compared to other
well-known state-of-the-art of vocoding. Finally, Section 12.5 concludes the chapter.

12.2 The DSM Vocoder

The DSM of the residual signal has been presented in Chapter 11 as a new excitation model. We here
propose a method of speech synthesis relying on this approach. A workflow summarizing the resulting
DSM vocoder can be found in Figure 12.1. The vocoder takes only two feature streams as input:
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pitch values (F0) for the source, and MGC coefficients for the filter (with α = 0.42 and γ = −1/3, as
indicated in Section 11.2). All other data is precomputed on a training dataset as explained in Chapter
11. As our informal attempts showed that adding eigenresiduals of higher orders (see Section 11.4) has
almost no audible effect on the delivered speech synthesis, only the first eigenresidual is considered for
speech synthesis purpose. The deterministic component rd(t) of the residual signal then consists of the
(first) eigenresidual resampled such that its length is twice the target pitch period. Following Equation
(11.3), the stochastic part rs(t) is a white noise modulated by the autogressive model and multiplied in
time by the energy envelope centered on the current Glottal Closure Instant (GCI). During synthesis,
artificial GCIs are created using the F0 information. Note that the energy envelope is also resampled to
the target pitch. Both components are then overlap-added so as to obtain the residual signal r(t). In
the case of unvoiced regions, the excitation merely consists of white Gaussian noise. The synthesized
excitation is finally the input of the Mel-Log Spectrum Approximation (MLSA, [15]) filter to generate
the final speech signal.
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Figure 12.1 - Workflow of the DSM vocoder. Input features (indicated in italic and underlined) are
the target pitch F0 and the MGC filter coefficients. All other data is precomputed on a training dataset.

12.3 Evaluation for Pitch Modification in Analysis-Synthesis

Voice transformation refers to the various modifications one may apply to the sound produced by a
person such that it is perceived as uttered by another speaker [16]. These modifications encompass
various properties of the speech signal such as prosodic, vocal tract-based as well as glottal charac-
teristics. Although all these features should be taken into account in an efficient voice transformation
system, this study only focuses on pitch modifications, as pitch is an essential aspect in the way speech
is perceived. More precisely, the main goal of this section is to compare the capabilities of the DSM
vocoder presented in Section 12.2 to the main state-of-the-art techniques for pitch modification.

This section is structured as follows. Section 12.3.1 gives a brief overview on the methods con-
sidered in this study, namely: the DSM of the residual signal, the Time-Domain Pitch-Synchronous
Overlap-Add technique (TDPSOLA, [17]), the Harmonic plus Noise Model of speech (HNM, [18])
and STRAIGHT [11]. In Section 12.3.2 these methods are compared through a subjective evaluation
regarding their pitch modification performance. Finally Section 12.3.3 discusses in depth the main
observations drawn from the results.
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12.3.1 Methods for Pitch Modification

Various approaches for pitch modification have already been proposed in the literature. Some of
them are based on a parametric modeling (HNM [18], STRAIGHT [11], ARX-LF [19]), or on a phase
vocoder [20], [21], while others rely on a non-parametric representation (TDPSOLA [17]). This section
briefly presents the methods that will be compared in Section 12.3.2: the DSM, TDPSOLA, HNM
and STRAIGHT algorithms. For information, the footprint of each method is presented in number of
parameters/second, giving an idea of their compression level.

Deterministic plus Stochastic Model of the Residual Signal (DSM)

We here make use of the DSM vocoder introduced in Section 12.2. As input of the workflow exhibited
in Figure 12.1, 25 MGC parameters are used for the vocal tract, and only F0 for the excitation, all
other data being pre-computed on the speaker-dependent database. These features are extracted every
5 ms which leads to a 5200 parameters/s vocoder.

Time-Domain Pitch-Synchronous Overlap-Add (TDPSOLA)

The TDPSOLA technique [17] is probably the most famous non-parametric approach for pitch mod-
ification. According to this method, pitch-synchronous speech frames whose length is a multiple of
the pitch period are duplicated or eliminated. It is in this way assumed that the pitch can be modi-
fied while keeping the vocal tract characteristics unchanged. In our implementation we considered two
pitch period-long speech frames centered on the GCIs. GCI positions were located by the SEDREAMS
method described in Section 3.3 (or [22]), providing a high-quality phase synchronization. As this tech-
nique is based on the speech waveform itself (sampled at 16 kHz in our experiments), 16000 values/s
are necessary.

Harmonic plus Noise Model (HNM)

The Harmonic plus Noise Model (HNM, [18]) assumes the speech signal to be composed of a harmonic
part and a noise part. The harmonic part accounts for the quasi-periodic component of the speech
signal while the noise part accounts for its non-periodic components (e.g., fricative or aspiration noise,
etc.). The two components are separated in the frequency domain by a time-varying parameter, referred
to as maximum voiced frequency Fm. The lower band of the spectrum (below Fm) is assumed to be
represented solely by harmonics while the upper band (above Fm) is represented by a modulated noise
component. In this study, we used the HNM algorithm with its default options. Since the number of
harmonics (and consequently of parameters) is different depending on F0 and Fm, the bitrate may vary
across speakers and sentences. In average, we found that around 10000 parameters were necessary for
coding 1s of speech.

STRAIGHT

STRAIGHT is a well-known vocoding system [11] which showed its ability to produce high-quality
voice manipulation and was successfully incorporated into HMM-based speech synthesis. STRAIGHT
is basically based on both a source information extractor as well as a smoothed time-frequency repre-
sentation [11]. In this work, we employed the version publicly available in [23] with its default options.
In this implementation, the algorithm extracts every 1 ms: the pitch, aperiodic components of the
excitation (513 coeff.) and a representation of the smoothed spectrogram (513 coeff.). This leads to a
high-quality vocoder using a bit more than 1 million parameters/s.
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12.3.2 Experiments

In this part, methods presented in Section 12.3.1 are evaluated on 3 male (AWB, BDL and JMK)
and 2 female (CLB and SLT) speakers from the CMU ARCTIC database [24]. For each speaker, the
first three sentences of the database were synthesized using the four techniques, and this for 5 pitch
modification ratios: 0.5, 0.7, 1, 1.4 and 2. This leads to a total set containing 300 sentences. The
DSM technique was compared to the three other approaches (TDPSOLA, HNM and STRAIGHT)
through a Comparative Mean Opinion Score (CMOS, [25]) test composed of 30 pairwise sentences
chosen randomly among the total set. 27 people (mainly naive listeners) participated to the test. For
each sentence they were asked to listen to both versions (randomly shuffled) and to attribute a score
according to their overall preference. The CMOS values range on a gradual scale presented in Table
12.1. The CMOS scores vary from -3 (meaning that DSM is much worse than the other technique)
to +3 (meaning the opposite). A score of 0 is given if both versions are found to be equivalent. It
is worth noting that, due to the unavailability of a ground truth reference of how a sentence whose
pitch has been modified by a given factor should sound, participants were asked to score according to
their overall appreciation of the different versions. These scores then reflect both the quality of pitch
modification, as well as the possible artifacts that the different signal representations may generate.

Much better +3
Better +2

Slightly better +1
About the same 0
Slightly worse -1

Worse -2
Much worse -3

Table 12.1 - Grades in the CMOS scale.

Figure 12.2 displays the CMOS results with their 95% confidence intervals for the three comparisons
and according to the gender of the speaker. For male voices, it can be noticed that DSM gives scores
similar to TDPSOLA, while its advantage over HNM, and STRAIGHT in a lesser extent, is appreciable.
For female speakers, the tendency is inversed. DSM is comparable to HNM while it is superior to
TDPSOLA. Albeit for such comparative subjective tests transitional properties can not be assumed to
hold, it however seems that STRAIGHT outperforms all other techniques for female voices. It is also
worth noticing that the degradation of DSM with regard to STRAIGHT for female speakers is done at
the expense of a high gain of compression and complexity. Depending on the considered application,
the choice of one of the compared method should then result from a trade-off between these latter
criteria (i.e speech quality vs compression rate).

In Figure 12.3 the preference scores for both male and female speakers can be found. Although
somehow redundant with the previous results, this figure conveys information about the percentage of
preference for a given method and about the ratio of indifferent opinions. Interestingly it can be noted
that DSM was in general preferred to other methods, except for female speakers where STRAIGHT
showed a clear advantage. In [19], Vincent et al. compared an improved ARX-LF framework to
TDPSOLA and HNM through a small preference test. Even though these results are obviously not
extrapolable, the preference scores they obtain are stronlgy similar to ours (while the DSM technique
is much simpler), except for the comparison with TDPSOLA on female voices where ARX-LF was
shown to be inferior.

Finally, the evolution of the performance with the pitch modification ratio is analyzed in Figure
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Figure 12.2 - CMOS results together with their 95% confidence intervals for the three comparisons
and for both male and female speakers.

Figure 12.3 - Preference scores for the three comparisons and for both male and female speakers.

Figure 12.4 - Evolution of the CMOS results with the pitch modification ratio for both male and
female speakers.

12.4. As a reminder, the higher the CMOS score, the more DSM was preferred regarding the method to
which it was compared. A positive (negative) value means that, in average, the DSM (the other method)
was preferred. Interestingly, it can be observed that in general plots tend to exhibit a minimum in 1
(where no pitch modification was applied) and go up around this point. This implies that the relative
performance of DSM over other techniques increases as the pitch modification ratio is important. This
was expected regarding the comparison with TDSPOLA, but the same observation seems to hold for
STRAIGHT, and for HNM (though in a lesser extent for male voices). Note that in our implementation
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of TDPSOLA, a GCI-synchronous overlap-add was performed even when no pitch modification was
required. This may explain why, for female voices (for which GCIs are known to be difficult to be
precisely located), listeners slighlty preferred DSM over TDPSOLA, even without pitch modification.

12.3.3 Discussion about the results

Several important conclusions can be drawn from the study led in Section 12.3.2:

• Interestingly, the DSM approach, despite its small footprint, gives similar or better results than
other state-of-the-art techniques. Its efficiency probably relies on its ability to implicitly capture
and process the essential of the phase information via the eigenresidual. The pitch-dependent
resampling operations involved in its process indeed preserve the most important glottal prop-
erties (such as the open quotient and asymmetry coefficient). Nevertheless a degradation for
female speakers is noticed. This can be mainly explained by the fact that the spectral enve-
lope we used may contain pitch information. Although this effect can be alleviated by the use
of Mel-Generalized Cepstral (MGC, [26]) coefficients instead of the traditional LPC modeling
(since MGCs make use of a warped frequency axis), it may still occur for high-pitched voices
where the risk of confusion between F0 and the first formant frequency F1 is more important.
After pitch modification, this effect leads to detrimental source-filter interactions, giving birth to
some audible artefacts. Note that this effect is almost completely avoided with STRAIGHT, as
this method makes use of a time-frequency smooth representation of the spectral envelope [11].
Reducing this drawback within the DSM framework is the object of ongoing work, possibly by
applying a GCI-synchronous spectral analysis instead of achieving it in an asynchronous way.

• Results we obtained for HNM corroborate the conclusions from [19] and [27]. In [27], the ob-
servation that sinusoidal coders produce higher quality speech for female speakers than for male
voices is justified by the concept of critical phase frequency, below which phase information is
perceptually irrelevant. Note also that we used the HNM algorithm with its default options. In
this version, we observed that the quality of the HNM output was strongly affected for some
voices by a too low estimation of the maximum voiced frequency. This led to an unpleasant
predominance of noise in the speech signal. Fixing the maximum voiced frequency to a constant
value (as in the DSM technique) could lead to a relative improvement for these problematic
voices.

• The degradation of TDPSOLA for female speakers is probably due to the difficulty in obtaining
accurate pitch marks for such voices. This results in inter-frame phase incoherences, degrading
the final quality. Besides note that TDPSOLA requires the original speech waveform as input
and is then not suited for parametric speech synthesis.

• It turns out from this study and the one exposed in [19] that approaches based on a source-
filter representation of speech lead to the best results. This is possible since these techniques
process the vocal tract and the glottal contributions independently. Among these methods,
STRAIGHT gives in average the best results but requires heavy computation load. The DSM
and the improved ARX-LF technique proposed in [19] seem to lead to a similar quality. Note that
STRAIGHT was successfully integrated into a HMM-based speech synthesizer in [28]. As it will
be shown in Section 12.4 (or see [29]), this is also the case for the DSM. In [30], it was proposed to
incorporate the traditional ARX-LF model in a statistical parametric synthesizer. Although an
improvement regarding the basic baseline was reported, it seems that this latter is less significant
than it was achieved by STRAIGHT and DSM. It is then clear that the good quality obtained
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in [19] and [31] with the improved ARX-LF method is reached thanks to the modeling of the
LF-residual (i.e the signal obtained after removing the LF contribution in the excitation). This
is possible in an analysis-synthesis task (where the target LF-residual is available), but was not
yet carried out in speech synthesis. Finally note that the ARX-LF approach has the flexibility
to potentially produce easy modifications of voice quality or emotion ([31], [30]) since it relies
directly on a paramectric model of the glottal flow (which is not the case for the DSM and
STRAIGHT techniques).

Given the good quality of the DSM vocoder in an analysis-synthesis context, and its ability to
perform pitch modification, it would be of interest to incorporate it into a parametric speech synthesizer.
This is the object of Section 12.4 which focuses on the integration and evaluation of the DSM technique
into HMM-based speech synthesis.

12.4 Evaluation for HMM-based Speech Synthesis

Before the last few years, synthetic speech was typically produced by a method based on Unit Selection
[1], also called Non Uniform Units (NUU). For this, frames of natural speech selected from a huge
database were concatenated, possibly applying signal processing to them so as to smooth discontinuities
at jointures [1]. The main advantage of this approach is the high quality at the waveform level, as it
relies on segments of real speech, therefore embedding all its subtleties. Nonetheless its performance
may rapidly degrade due to some possible discontinuities (despite the smoothing process), or to some
miss, i.e when an unit to synthesize is not present in the corpus [3]. These hindrances are generally
overcome by increasing the size of the database so as to enhance its covering. However this implies to
stock a corpus of several hours of speech, and the ensuing synthesizer requires a high amount of ROM
memory.

Recently, a new approach of speech synthesis has emerged: the Statistical Parametric Speech (SPS)
synthesis [2]. The most famous technique representative of SPS is the HMM-based speech synthesis [3],
whose principle is detailed in Section 12.4.1. Basically SPS relies on a statistical modeling of speech
parameters. At synthesis time, given the input text, the most likely trajectory of speech parameters
is generated from the statistical model. These parameters are then provided to a vocoder, which
synthesizes the final speech waveform. The main advantages of SPS are [2], [3]:

• its flexibility: Thanks to the statistical model which it relies on, SPS has the ability to easily
modify voice characteristics, to be applied to various languages with little modification, or to
produce various speaking styles or emotional speech using a small amount of speech data.

• its small footprint: Albeit it is trained on a large speech corpus, the implementation of the SPS
system only requires the storage of the statistical modeling, which results in a huge compression
rate. Typically, a HMM-based speech synthesizer holds within 1MB, which makes it suited for
small devices and embedded systems.

• its smoothness and stability: Contrarily to the NUU technique, SPS does not suffer from neither
discontinuities (i.e the speech parameter trajectories are smooth), nor misses (in the case where
the sound to produce is not covered in the training database, SPS extrapolates information
relying on its statistics, which tends to give better results than NUU).

However, SPS presents some drawbacks which are inherent to its statistical and parametric nature.
First, the statistical process tends to oversmooth the generated trajectories, which results in what is
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called a muffled speech [32]. Secondly, the parametric representation of speech degrades the quality
compared to NUU, which uses segments of natural speech. Voice produced by SPS typically exhibits
a buzziness, as found in old LPC-based speech coders. The goal of this section is precisely to alleviate
this latter disadvantage by integrating the DSM vocoder in order to make synthetic speech sound less
buzzy, and consequently improve the final quality.

The remainder of this section is organized as follows. Section 12.4.1 describes the principle of
HMM-based speech synthesis, as well as how DSM is integrated into it, and what are the specificities
of our synthesizer. Sections 12.4.2 and 12.4.3 then evaluate the resulting synthesizer through two
subjective tests involving a large number of listeners. Section 12.4.2 compares DSM to the traditional
pulse excitation on 5 English and French voices. A comparison with both the pulse excitation and
STRAIGHT on two English speakers is provided in Section 12.4.3.

12.4.1 HMM speech synthesis based on DSM

HMM-based speech synthesis aims at generating natural sequences of speech parameters directly from
a statistical model, which is previously trained on a given speech database [33]. The general framework
of a HMM-based speech synthesizer is displayed in Figure 12.5. Two main steps can be distinguished
in this process: training and synthesis.

Figure 12.5 - Framework of a HMM-based speech synthesizer (adapted from [33]).

The training step assumes that a large segmented speech database is available. Labels consist of a
phonetic environment description. First, both excitation (source) and spectral (filter) parameters are
extracted from the speech signals. Since source modeling may be composed of either continuous values
or a discrete symbol (respectively during voiced and unvoiced regions), Multi-Space probability Density
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(MSD) HMMs have been proposed [34], as this approach is able to model sequences of observations
having a variable dimensionality. Given the speech parameters and the labels, HMMs are trained using
the Viterbi and Baum-Welch re-estimation algorithms [33]. Decision tree-based context clustering is
used to statistically model data appearing in similar contextual situations. Indeed contextual factors
such as stress-related, locational, syntaxical or phonetic factors affect prosodic (duration and source
excitation characteristics) as well as spectral features. More precisely an exhaustive list of possible
contextual questions is first drawn up. Decision trees are then built for source, spectrum and duration
independently using a maximum likelihood criterion. Probability densities for each tree leaf are finally
approximated by a Gaussian mixture model.

At synthesis time, the input text is converted into a sequence of contextual labels using a Natural
Language Processor. From them, a path through the context-dependent HMMs is computed using
the duration decision tree. Excitation and spectral parameters are then generated by maximizing the
output probability. The incorporation of dynamic features (∆ and ∆2) makes the coefficients evolution
more realistic and smooth [35]. The generated parameters are then the input of the vocoder, which
produces the synthetic waveform.

The implementation of our HMM-based speech synthesizer relies on the HTS toolkit publicly avail-
able in [36]. As mentioned in Section 12.2, the only excitation feature used for the training is F0.
A five-state left-to-right multistream HMM is used. More precisely, four separate streams are em-
ployed: i) one single Gaussian distribution with diagonal covariance for the spectral coefficients and
their derivatives, ii) one MSD distribution for pitch, iii) one MSD distribution for pitch first deriva-
tive, and iv) one MSD distribution for pitch second derivative. In each MSD distribution, for voiced
parts, parameters are modeled by single Gaussian distributions with diagonal covariance, while the
voiced/unvoiced decision is modeled by an MSD weight. As HMMs are known for oversmoothing the
generated trajectories [32], the Global Variance technique [32] is used to alleviate this effect. The
generated parameters are then fed into the vocoder described in Section 12.2.

12.4.2 First Evaluation

In this first experiment, the DSM vocoder is compared to the traditional Pulse excitation, whose
workflow is summarized in Figure 12.6. This technique basically uses either a pulse train during voiced
speech, or white noise during unvoiced parts. As for the DSM vocoder, the resulting excitation signal
is then the input of the MLSA filter fed by the MGC coefficients.

Figure 12.6 - Workflow of the vocoder using the traditional Pulse excitation. Input features (indicated
in italic and underlined) are the target pitch F0 (which also control the switch between voiced and
unvoiced excitation) and the MGC filter coefficients.

Experimental Protocol

The synthetic voices of five speakers are assessed: AWB (Scottish male), Bruno (French male), Julie
(French female), Lucy (US female) and SLT (US female). AWB and SLT come from the publicly
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available CMU ARCTIC database [24] and about 45 minutes of speech for each were used for the
training. Other voices were kindly provided by Acapela Group and were trained on a corpus of around
2 hours. The test consists of a subjective comparison between the proposed and the traditional pulse
excitation. For this, 40 people participated to a CMOS test composed of 20 randomly chosen sentences
of about 7 seconds. For each sentence they were asked to listen to both versions (randomly shuffled)
and to attribute a score according to their overall preference (see the CMOS scale in Table 12.1).

Results

Preference scores can be viewed in Figure 12.7. A clear improvement over the traditional pulse ex-
citation can be observed for all voices. Indeed, DSM was preferred between 78% and 94% of cases,
depending on the considered voice, while the proportion of preference for Pulse did not exceed 8%.
Compared to the method using a pitch-synchronous residual codebook we proposed in [5], results are
almost similar on male speakers, with a minor loss of less than 5% for both AWB and Bruno. On
the contrary, the contribution on female voices is much more evident. While only 30% of participants
preferred the technique using the codebook for speaker SLT [5], score now reaches more than 90% for
the DSM. This trends holds for other female voices. Figure 12.8 exhibits the average CMOS scores with
their 95% confidence intervals. Average values vary between 1 and 1.75, confirming a clear significant
advantage for the proposed technique.
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Figure 12.7 - Preference score for the five speakers.

12.4.3 Second Evaluation

In this second experiment, the proposed DSM is compared to three other state-of-the-art excitation
models for HMM-based speech synthesis purpose. The first method is the traditional Pulse excitation,
used by default in the HTS toolkit [36], and whose workflow is displayed in Figure 12.6.

The second method, called Glottal Post-Filtering (GPF), was proposed in [37] and aims at combin-
ing the LF model [14] with the spectral envelope of STRAIGHT. The workflow of the GPF vocoder is
illustrated in Figure 12.9. Basically, it consists of transforming the LF model signal into a spectrally
flat signal. The resulting signal can be used to synthesise speech instead of the impulse train. Al-
though the excitation obtained using GPF does not represent the glottal source signal, this excitation
is expected to produce more natural speech than the impulse train [37]. This improvement is explained
by the fact that the spectrum of this excitation has a harmonic structure less periodic than that of the
impulse train spectrum, which reduces the buzziness of the synthetic speech.
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Figure 12.8 - Average CMOS score in advantage of the DSM for the five speakers, together with their
95% confidence interval.
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Figure 12.9 - Workflow of the GPF vocoder. Input features (indicated in italic and underlined) are,
for the excitation, the target pitch F0, the LF model parameters and the aperiodicity coefficients, and
the spectral envelope parameters for the filter.

The third method is the STRAIGHT vocoder, known for its high-quality representation of the
speech signal. STRAIGHT makes use of a specific spectral envelope obtained via a pitch-adaptive
time-frequency smoothing of the FFT speech spectrum. As for the excitation modeling, STRAIGHT
relies on aperiodic measurements in five spectral subbands: [0-1], [1-2], [2-4], [4-6] and [6-8] kHz.
As a consequence, the excitation features used by the HMM synthesizer now include the 5 aperiodic
measurements besides F0. This results in an additional HMM stream composed of these aperiodicity
parameters, together with their first and second derivatives. Once generated, the speech features are
the input of the STRAIGHT vocoder presented in Figure 12.10. The source signal is a Mixed Excitation
whose periodic and aperiodic components are weighted by the aperiodicity measures. As suggested in
[11], the phase of the periodic contribution is manipulated so as to reduce buzziness. Both components
are then added, and passed through a minimum-phase filter obtained from the parameters describing
the smooth STRAIGHT spectral envelope.

Experimental Protocol

The synthetic voices of two UK English speakers were assessed. The first is a male speaker who recorded
about ten hours, while the second is a female speaker with about four hours of speech. The HMM-
based speech synthesizers were trained, for both voices, on the whole corpus. This was carried out, as
explained in Section 12.4.1, by the Centre for Speech Technology Research of Edinburgh, which kindly
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Figure 12.10 - Workflow of the STRAIGHT vocoder. Input features (indicated in italic and under-
lined) are, for the excitation, the target pitch F0 and the 5 aperiodic measurements, and the spectral
envelope parameters for the filter.

provided us the generated parameters1. All details about the training and the parameter generation
can be found in [37], as well as other experiments with other excitation models.

The test consists of a subjective comparison between the proposed DSM and both the traditional
pulse excitation and STRAIGHT. More precisely, we performed a CMOS test composed of 23 sentences,
among which the first 3 were provided for calibration. These utterances were randomly chosen out of
a set of 120 sentences, half for each speaker. For each sentence, participants were asked to listen to
both versions (DSM versus Pulse or STRAIGHT, randomly shuffled) and to attribute a CMOS score
according to their overall preference. Participants were divided into two categories: 26 speech experts
(i.e people familiar with speech processing), and 34 naive listeners. The test was conducted through
the Web.

Results

Results of the CMOS test are exhibited in Table 12.2, and are separated for the two categories of
participants. First, it is observed that speech experts significantly perferred DSM over the pulse
excitation, with a CMOS score of a bit more than 1.2 for both the male and the female speaker.
A similar conclusion can be drawn for the naive listeners, although their averaged CMOS scores are
around 0.75 instead of 1.2. As a matter of fact, we observed that naive listeners used the whole CMOS
scale in a lesser extent. Indeed, since the only change between the two versions only concerns the
excitation modeling (as spectral envelope and prosody were kept unchanged), auditive differences were
relatively subtle. It can then be understood that speech experts noticed them more easily.

DSM is also observed to outperform GPF for both categories of listeners, and this to a greater extent
for male speakers. Averaged CMOS scores for GPF reached around 75% of those obtained with the
pulse excitation for male voices, and about 50% for female speakers. Regarding the comparison with
STRAIGHT, it turns out that both methods were found, in average, to deliver a comparable quality.
Although speech experts very slightly preferred DSM, the opposite is noted for naive listeners. But
taking the 95% confidence intervals into account, no significant advantage for DSM over STRAIGHT,
or vice versa, can be highlighted.

In complement to the CMOS scores, Tables 12.3 and 12.4 present the preference results for all
test conditions, respectively for the male and female speakers. While speech experts preferred DSM to
Pulse in about 75% of cases, this proportion is reduced to around 60% for naive listeners. Nevertheless,
the advantage of DSM over Pulse is clear again, as Pulse was only preferred in very few cases. DSM is
also noticed to give a better performance than GPF. Indeed only about 15% of speech experts preferred
GPF over DSM. On naive listeners, this rate reached 19.5% for male speakers, and 26.8% for female

1We are very grateful to Dr. Joao Cabral and Prof. Steve Renals for their precious help.
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Speech Experts Male Speaker Female Speaker
DSM vs Pulse 1.205 ± 0.198 1.241 ± 0.209
DSM vs GPF 0.840 ± 0.202 0.655 ± 0.256

DSM vs STRAIGHT 0.167 ± 0.217 0.037 ± 0.197

Naive listeners Male Speaker Female Speaker
DSM vs Pulse 0.75 ± 0.196 0.722 ± 0.188
DSM vs GPF 0.59 ± 0.176 0.363 ± 0.181

DSM vs STRAIGHT -0.010 ± 0.164 -0.072 ± 0.201

Table 12.2 - Average CMOS scores together with their 95 % confidence intervals, for both speech
experts and naive listeners.

voices, confirming a clear advantage in favor of DSM. Regarding the comparison with STRAIGHT,
preference results confirm that both methods are almost equivalent. Indeed it is seen in Table Tables
12.3 and 12.4 that the repartition between the three categories is almost one third, reflecting the fact
that both methods lead to a similar quality. However, one advantage of DSM over STRAIGHT is that
it does not require the addition of a specific stream in the HMM-based synthesizer, making not only
the training step lighter, but also more importantly alleviating the computational footprint at running
time.

Speech Experts DSM preferred Equivalent Other method preferred
DSM vs Pulse 76.07 % 18.80 % 5.13 %
DSM vs GPF 63.50 % 21.90 % 14.60 %

DSM vs STRAIGHT 33.33 % 40.35 % 26.32 %

Naive listeners DSM preferred Equivalent Other method preferred
DSM vs Pulse 59.38 % 24.38 % 16.24 %
DSM vs GPF 54.66 % 29.19 % 16.15 %

DSM vs STRAIGHT 31.22 % 33.86 % 34.92 %

Table 12.3 - Preference scores for the male speaker, for both speech experts and naive listeners.

Speech Experts DSM preferred Equivalent Other method preferred
DSM vs Pulse 73.68 % 18.80 % 7.52 %
DSM vs GPF 55.75 % 24.78 % 19.47 %

DSM vs STRAIGHT 35.77 % 32.85 % 31.39 %

Naive listeners DSM preferred Equivalent Other method preferred
DSM vs Pulse 62.78 % 16.11 % 21.11 %
DSM vs GPF 46.93 % 26.26 % 26.82 %

DSM vs STRAIGHT 30.47 % 33.11 % 36.42 %

Table 12.4 - Preference scores for the female speaker, for both speech experts and naive listeners.

In Section 12.4.2, the first evaluation compared DSM and Pulse for 5 English and French voices,
and the CMOS test was submitted to 40 people, among them both speech experts and naive listeners.
Since the data, the synthesizer itself and the test conditions are not the same, results are obviously
not directly comparable. However, the conclusions drawn from these two experiments both report the
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overwhelming advantage of DSM over Pulse in speech synthesis. This superiority was even stronger in
Section 12.4.2 where the averaged CMOS scores varied between 1 and 1.8 across the 5 voices, and the
preference rates for DSM between 78% and 94%.

12.5 Conclusion

This chapter aimed at applying the DSM of the residual signal introduced in Chapter 11 to speech
synthesis. For this, the DSM vocoder was first presented. The resulting method was then evaluated
within two applicative contexts: pitch modification and HMM-based speech synthesis. Regarding the
pitch modifications capabilities, DSM was compared to 3 other well-known state-of-the-art techniques
for this purpose: TDPSOLA, HNM and STRAIGHT. A subjective test showed that DSM clearly
outperforms TDPSOLA for female speakers and HNM on male voices. DSM was also observed to
be slightly better than STRAIGHT on male speakers, while STRAIGHT obtained higher results on
female voices.

In a second application, the DSM vocoder was integrated into a HMM-based speech synthesizer.
The quality delivered by the resulting synthesizer was compared to the traditional pulse excitation, the
GPF and the STRAIGHT methods. Two subjective comparative evaluations involving a large number
of participants, among which speech experts and naive listeners, were performed. In all cases, results
showed a significant preference for DSM over the pulse excitation, this advantage being clearer for
speech experts. DSM was also shown to provide a better quality than the GPF excitation modeling.
As for the comparison with STRAIGHT, both techniques turned out to lead to similar quality for both
male and female voices.
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APPLICATION OF DSM TO SPEAKER RECOGNITION

Abstract

Most of current speaker recognition systems are based on features extracted from the
magnitude spectrum of speech. However the excitation signal produced by the glottis
is expected to convey complementary relevant information about the speaker identity.
This chapter explores the use of glottal signatures, derived from the Deterministic plus
Stochastic Model (DSM) of the residual signal proposed in Chapter 11, for speaker iden-
tification. Experiments using these signatures are performed on both TIMIT and YOHO
databases. Promising results are shown to outperform other state-of-the-art approaches
based on glottal features.

This chapter is based upon the following publications:

• Thomas Drugman, Thierry Dutoit, On the Potential of Glottal Signatures for Speaker Recogni-
tion, Interspeech Conference, Makuhari, Japan, 2010.

• Thomas Drugman, Thierry Dutoit, The Deterministic plus Stochastic Model of the Residual
Signal and its Applications, IEEE Transactions on Audio, Speech and Language Processing,
Accepted for publication.
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13.1 Introduction

13.1 Introduction

Automatic speaker recognition refers to the use of a machine in order to recognize a person from a
spoken phrase [1]. This task is then closely linked to the understanding of what defines the speaker
individuality. Although high-level information (such as the word usage) could be of interest, low-level
acoustic features are generally employed [1]. Such features are most of the time extracted from the
amplitude spectrum of the speech signal. They aim at parameterizing the contribution of the vocal
tract, which is an important characteristic of the speaker identity. On the other hand, very few works
address the possibility of using features derived from the glottal source in speaker recognition. However
significant differences in the glottal waveforms have been observed between different speaker types [2].

In [3], Thevenaz exploits the orthogonality of the LPC residue for text-independent speaker ver-
ification. In order to avoid synchronization with pitch epochs and simultaneously to get rid of the
residual phase contribution, it was suggested to retain the residual amplitude spectrum. It is con-
cluded that although the residue-based features are less informative than the vocal tract-based ones,
they are nonetheless useful for speaker verification, and above all combine favourably with methods
based on the LPC filter. In [4], Murty et al. demonstrate the complementarity of features based on the
residual phase with the traditional MFCCs, commonly used in speaker recognition. Authors led speaker
recognition experiments on the NIST-2003 database. By integrating the residual phase information in
addition to the common MFCCs, they reported a reduction of equal error rate from 14% to 10.5%. In
[5], Plumpe et al. focused on the use of the glottal flow estimated by closed phase inverse filtering.
On the resulting glottal source, two types of features were extracted. The first ones are time-domain
features, parameterizing both the coarse structure (obtained by fitting a LF model [6]) and the fine
structure of the glottal flow derivative. The second ones are a Mel-cepstral representation of the glottal
source. A clear advantage in favor of the cepstral coefficients was shown. In a similar way, Gudnason
et al. focus in [7] on the use of Voice Source Cepstrum Coefficients (VSCCs) for speaker recognition.
A process based on closed-phase inverse filtering, and which is shown to be robust to LPC analysis
errors and low-frequency phase distortion, is proposed. When combined to traditional MFCCs, the
resulting features are reported to lead to an appreciable improvement for speaker identification.

The goal of this chapter is to investigate the potential of using glottal signatures in speaker recogni-
tion. The research of an invariant voiceprint in the speech signal, univoquely characterizing a person (as
achieved with the fingerprint), has always attracted the speech community [8]. As this seems utopian
due to the inherent nature of the phonation mechanism, we here prefer the use of the term "signature"
for denoting a signal conveying a relevant amount of information about the speaker identity.

It is here focused on the usefulness of glottal signatures derived from the Deterministic plus Stochas-
tic Model (DSM) of the residual excitation, introduced in Chapter 11, for speaker recognition purpose.
For this, we suggest to use speaker-dependent waveforms of the DSM: the eigenresiduals for the deter-
ministic part (see Section 11.4), and the energy envelope for the stochastic contribution (see Section
11.5). It was also shown in Section 11.6 that about 1000 voiced frames are sufficient for a reliable
estimation of these signatures. This means that about 7s of voiced speech for a male speaker, or 4s for
a female voice, are sufficient for a reliable identification using these waveforms. Besides the estimation
was shown in Section 11.7 to converge towards the same waveform independently of the considered
phonetic class. The signatures could then be used in text-independent speaker recognition.

The chapter is structured as follows. Section 13.2 explains how the DSM-based waveforms are
used for speaker identification purpose. In Section 13.3, the protocol used for our experiments is
described. Section 13.4 presents our results on the large TIMIT database. First of all, the potential
of the proposed waveforms is investigated, as well as the impact of the higher orders eigenresiduals.
Then, speaker identification performance using the glottal signatures is assessed. Our experiments on
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the YOHO database are reported in Section 13.5. This gives an idea of the inter-session sensitivity
of the proposed technique. On both databases, some comparisons with other glottal-based speaker
recognition approaches [5], [7] are provided.

13.2 Integrating Glottal Signatures in Speaker Identification

In order to be integrated into a speaker identification system, the proposed DSM-based signatures are
estimated on both training and testing sets. A distance matrix D(i, j) between speaker i (whose glottal
signatures are estimated on the training dataset) and speaker j (estimated on the testing dataset) is
then computed. In this work, the Relative Time Squared Error (RTSE) (see Equation 11.4) is chosen
as a distance measure between two waveforms. Finally, the identification of a speaker i is carried out by
looking for the lowest value in the ith row of the distance matrix D(i, j). The speaker is then correctly
identified if the position of the minimum is i. In other words, when a new recording is presented to
the system, the identified speaker is the one whose glottal signatures are the closest (in the Euclidian
sense) to the signatures extracted on this recording.

In the following, it will be seen that no more than two glottal signatures are used for speaker
identification. Many strategies are possible for combining their information and draw a final decision
[9]. In this study, two strategies are considered: a weighted multiplication or a weighted sum. More
precisely, denoting Dx(i, j) and Dy(i, j) the distance matrices using respectively the glottal signatures
x(n) and y(n), the two sources of information are merged in our framework by calculating the final
distance matrix D(i, j) respectively as:

D(i, j) = Dx(i, j)
α ·Dy(i, j)

1−α (13.1)

D(i, j) = β ·Dx(i, j) + (1− β) ·Dy(i, j) (13.2)

where α and β are weights ranging from 0 to 1. They are used to possibly emphasize the importance
of a given glottal signature with regard to the other. When the weight is 0, only y(n) is considered,
while a weight equal to 1 means that only x(n) is used for identification.

13.3 Experimental Protocol

In this Section, the maximum voiced frequency Fm is fixed to 4 kHz (usual value for a modal voice
quality, as shown in Section 11.3) and the normalized pitch value F ∗

0 is set to 100 Hz for all speakers.
Experiments are carried out on both TIMIT and YOHO databases, for comparison purpose with [5] and
[7]. In [5], Plumpe et al. reported speaker identification results on TIMIT using either Time-Domain
features (TDGF) or a Mel-Cepstral (MCGF) representation of the estimated Glottal Flow. As for
[7], Gudnason et al. performed tests on both TIMIT and YOHO using their proposed Voice Source
Cepstrum Coefficients (VSCC). For both methods, classification was performed using an approach
based on a Gaussian Mixture Model(GMM).

The TIMIT database [10] comprises 10 recordings from 630 speakers (438 males, 192 females) and
sampled at 16 kHz. As for the YOHO database [11], it contains speech from 138 speakers (108 males,
30 females) sampled at 8 kHz. Since Fs = 8kHz for YOHO, only the deterministic part of the DSM
holds, and the unvoiced energy envelope cannot therefore be used for the recognition. Recordings of
YOHO were collected in a real-world office environment through 4 sessions over a 3 month period. For
each session, 24 phrases were uttered by each speaker.
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In the following experiments, the data is split for each speaker (and each session for YOHO) into
2 equal parts for training and testing. This is done in order to guarantee that, for both steps, enough
residual frames are available for reliably estimating the signatures (see Section 11.6). However, it is
worth noting that although there was always a sufficient number of frames for YOHO, it happened for
some low-pitched voices of the TIMIT database that only around 500 voiced frames were used for the
training or the test. This consequently led to an imperfect estimation of the glottal signatures in such
cases.

13.4 Results on the TIMIT database

13.4.1 Usefulness of the glottal signatures

To give a first idea on the potential of using the glottal signatures in speaker recognition, Figure 13.1
displays the distributions of Dµ1

(i, j) (i.e the distance matrix using only the first eigenresidual µ1(n))
respectively when i = j and when i 6= j. In other words, this plot shows the histograms of the RTSE
(in logarithmic scale) between the first eigenresiduals estimated respectively for the same speaker, and
for different speakers. It is clearly observed that the error measure is much higher (about 15 times
higher in average) when the tested signature does not belong to the considered speaker. It is also
noticed that, for the same speaker, the RTSE on the eigenresidual is about 1%, which is of the same
order of magnitude as for the inherent estimation process, confirming our results of Sections 11.6 and
11.7. However a weak overlap between both distributions is noted, which may lead to some errors in
terms of speaker identification.
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Figure 13.1 - Distributions of the Relative Time Squared Error (RTSE) between the first eigenresiduals
µ1(n) estimated respectively for the same speaker and for different speakers.

13.4.2 Effect of the higher order eigenresiduals

It was mentioned in Section 11.4, that only considering the first eigenresidual is sufficient for a good
modeling of the residual signal below Fm, and that the effect of higher order eigenresiduals is almost
negligible in that spectral band. One could argue however that higher order waveforms can be useful
for speaker recognition. Figure 13.2 shows the identification rate on the whole TIMIT database (630
speakers), for each eigenresidual µi(n). It is clearly observed that higher order eigenresiduals are less
discriminative about the speaker identity. More particularly, the identification rate dramatically drops
from 88.6% to 39.8% when going from the first to the second eigenresidual used individually.
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Figure 13.2 - Speaker identification capability on the whole TIMIT database using individually the
eigenresiduals of higher orders.

In order to assess the contribution of higher order eigenresiduals, Figure 13.3 shows the evolution
of the identification rate as a function of α and β, when the first and second eigenresiduals µ1(n) and
µ2(n) are combined according to Equations (13.1) and (13.2). In both strategies, it turns out that
considering µ2(n) in addition to µ1(n) does not bring anything, since optimal performance is reached
for α=1 and β=1. Therefore, the effect of higher order eigenresiduals for speaker identification can be
neglicted and only µ1(n) is considered in the following experiments.
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Figure 13.3 - Evolution of the identification rate as a function of α and β, when the first and
second eigenresiduals (µ1(n) and µ2(n)) are combined according to Equations (13.1) and (13.2).

13.4.3 Combining the eigenresidual and the energy envelope

Contrarily to higher order eigenresiduals, the energy envelope e(n) of the stochastic part (see Section
11.5) showed a high discrimination power with an identification rate of 82.86% on the whole TIMIT
database. It can then be expected that using the first eigenresidual µ1(n) in complement to e(n) could
improve the performance. For this, they are combined as in Equations (13.1) and (13.2), and the
influence of α and β is displayed in Figure 13.4. First, the advantage of using both signatures together
is clearly confirmed. Secondly, the optimal performance using Eq. (13.1) or Eq. (13.2) is identical. In
the rest of our experiments, we used Equation 13.1 with α=0.5 which, although slightly suboptimal in
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this example, makes the combination as a simple element-by-element multiplication of Dµ1
(i, j) and

De(i, j).
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Figure 13.4 - Evolution of the identification rate as a function of α and β, when the first eigen-
residual µ1(n) and the energy envelope e(n) are combined according to Equations (13.1) and
(13.2).

13.4.4 Speaker identification results

Figure 13.5 exhibits the evolution of the identification rate with the number of speakers considered
in the database. Identification was achieved using only one of the two glottal signatures, or using
their combination as suggested in Section 13.2. As expected the performance drops as the number of
speakers increases, since the risk of confusion becomes more important. However this degradation is
relatively slow in all cases. One other important observation is the clear advantage of combining the
information of the two signatures. Indeed this leads to an improvement of 7.78% compared to using
only the first eigenresidual on the whole database.
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Figure 13.5 - Evolution of the identification rate with the number of speakers for the TIMIT database.

Table 13.1 summarizes the results obtained on the TIMIT database. Identification rates for 168
speakers are also given for comparison purpose. Using the time-domain parametrization of the glottal
flow (TDGF), Plumpe et al. [5] reported an average misclassification rate of 28.65%. This result
was importantly reduced to 4.70% by making use of the Mel-cepstral representation of the glottal
flow (MCGF). On the same subset, Gudnason et al. reported in [7] a misclassification rate of 5.06%
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using their proposed VSCC. These results can be compared to the 1.98% we achieved using the two
glottal signatures. Finally also note that, relying on the VSCC, Gudnason et al. [7] obtained a
misidentification rate of 12.95% on the whole TIMIT database (630 speakers). With the proposed
signatures, a misclassification rate of 3.65% is reached. It is worth noting that no specific disparity
bewteen male and female speakers was observed. More precisely, 6 out of the 192 female speakers
(3.13%), and 17 out of the 438 male speakers (3.88%) were misclassified using the two glottal signatures.

168 speakers 630 speakers

TDGF [5] 28.65 /
MCGF [5] 4.70 /
VSCC [7] 5.06 12.95

Using only the eigenresidual 5.88 11.43
Using only the energy envelope 8.76 17.14
Using both glottal signatures 1.98 3.65

Table 13.1 - Misidentification rate (%) on the TIMIT database obtained using state-of-the-art glottal
approaches or the proposed DSM-based signatures.

13.5 Results on the YOHO database

As mentioned above, recordings in the YOHO database are sampled at 8 kHz, and therefore only
the first eigenresidual is used for speaker identification. Besides, as the 4 sessions were spaced over
3 months, we evaluate here the inter-session variability of the proposed glottal signature. Table 13.2
reports our speaker identification results as a function of the period separating the training and testing
sessions. In addition the proportions of cases for which the correct speaker is recognized in second or
third position (instead of first position) are also given. When recordings are from the same session,
an almost perfect performance is carried out, with 99.73% of correct identification. This is above the
approximative 95% rate reached on TIMIT with the eigenresidual for the same number of speakers
(see Figure 13.5). This might be explained by the greater amount of data available in YOHO for the
estimation of the glottal signature.

On the contrary, when the test is performed one session later, the identification dramatically drops
by 30%. This first degradation accounts for two phenomena: the mismatch between training and
testing recording conditions, and the intra-speaker variability. It then turns out that the identification
rate decreases of about 5% for any later session. This is mainly attributable to speaker variability,
which increases with the period separating the two sessions. As future work, we plan to design a filter
whose variable phase response has the ability to compensate the mismatch between different recording
environments.

It is worth noting that when recording sessions differ, between 13% and 16% of speakers are
identified in second or third position. By integrating a complementary source of information, such
as the traditional features describing the vocal tract function, it can be expected that most of the
ambiguity on these signatures will be removed. Finally note that Gudnason et al. reported in [7] an
identification rate of 63.7% using the VSCC, but with test recordings coming from the 4 sessions. By
averaging our results over all sessions, the use of only the eigenresidual leads to an identification rate
of 71.1%, confirming the good performance of the DSM-based signatures for speaker recognition.
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First Position Second Position Third Position

Same session 99.73% 0.27% 0%
One session later 69.29% 7.88% 5.19%
Two sessions later 64.31% 8.83% 4.57%

Three sessions later 58.70% 11.78% 4.35%

Table 13.2 - Proportion of speakers classified in first (correct identification), second and third position,
when recordings are spaced over several sessions.

13.6 Conclusion

This chapter investigated the potential of using glottal signatures for speaker recognition. These
signatures were derived from the DSM of the residual signal proposed in Chapter 11, which is a new
speaker-dependent excitation modeling. Their usefulness was studied on the large TIMIT database,
and the identification carried out relying on DSM-based signatures was observed to outperform by large
the use of other glottal-based features proposed in the literature. An identification error of only 3.65%
was obtained with the 630 speakers of the TIMIT corpus using the two proposed glottal signatures.
In a second test on the YOHO database, we evaluated the inter-session sensitivity of these signatures,
highlighting the degradation due to a mismatch between recording conditions, and the intra-speaker
variability.

Several improvements could be brought to the current approach. Indeed results were obtained using
only the proposed glottal signatures. Regarding the evidence of a complementarity between excitation-
based and vocal tract-based features ([4], [5], [7]), it is reasonable to expect that combining the proposed
signatures with a conventional speaker recognition system (e.g. with a typical GMM-MFCC approach)
would lead to an appreciable improvement. Secondly, applying some channel compensation could
alleviate the mismatch between training and testing sessions. Indeed different recording conditions
impose different characteristics to the speech signal. Among these, differences in phase response may
dramatically affect the estimation of the signatures (since the information of the residual is essentially
contained in its phase).

191



APPLICATION OF DSM TO SPEAKER RECOGNITION

192



BIBLIOGRAPHY

Bibliography

[1] D. Reynolds. An overview of automatic speaker recognition technology. In Proc. IEEE Intl. Conf.
on Acoustics, Speech and Signal Processing (ICASSP), volume 4, pages 4072–4075, 2002.

[2] I. Karlsson. Glottal waveform parameters for different speaker types. In STL-QPSR, volume 29,
pages 61–67, 1988.

[3] P. Thevenaz and H. Hugli. Usefulness of the LPC-residue in text-independent speaker verification.
In Speech Communication, volume 17, pages 145–157, 1995.

[4] S. Murty and B. Yegnanarayana. Combining evidence from residual phase and MFCC features
for speaker recognition. In IEEE Signal Processing Letters, volume 13, pages 52–55, 2006.

[5] M. D. Plumpe, T. F. Quatieri, and D. A. Reynolds. Modeling of the glottal flow derivative
waveform with application to speaker identification. IEEE Trans. Speech Audio Process., 7(5):
569–576, September 1999.

[6] G. Fant and J. Liljencrants Q. Lin. A four parameter model of glottal flow. In STL-QPSR4, pages
1–13, 1985.

[7] J. Gudnason and M. Brookes. Voice source cepstrum coefficients for speaker identification. In
Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP), pages 4821–4824,
2008.

[8] L.G. Kersta. Voiceprint identification. Nature, 196:1253–1257, 1962.

[9] J. Kittler, M. Hatef, R. Duin, and J. Matas. On combining classifiers. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 20(3):226–239, 1993.

[10] W. Fisher, G. Doddington, and K. Goudie-Marshall. The darpa speech recognition research
database: Specifications and status. In Proc. DARPA Workshop on Speech Recognition, pages
93–99, 1986.

[11] J. Campbell. Testing with the yoho cd-rom voice verification corpus. In Proc. IEEE Intl. Conf.
on Acoustics, Speech and Signal Processing (ICASSP), pages 341–344, 1995.

193



BIBLIOGRAPHY

194



Chapter 14

General Conclusion

Contents

14.1 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

14.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

14.1 Contributions of this thesis

This thesis presented several advances in the field of glottal analysis. Solutions proposed in this
work were shown to provide appreciable improvements in various speech processing applications. The
original contributions of this thesis are the following:

• Pitch tracking

The Summation of Residual Harmonics (SRH) method has been proposed in Chapter 2 for robust
pitch tracking. A comparison with six state-of-the-art pitch trackers was performed in both clean
and noisy conditions. A clear advantage of the proposed approach was its robustness to additive
noise. In 9 out of the 10 noisy experiments (5 noise types at 0dB of Signal-to-Noise Ratio,
for male and female speakers), SRH was shown to lead to a significant improvement, while its
performance was comparable to other techniques in clean conditions.

• Glottal closure instant detection

The Speech Event Detection using the Residual Excitation And a Mean-based Signal (SE-
DREAMS) algorithm has been proposed in Chapter 3 for accurate, reliable and robust Glot-
tal Closure Instant (GCI) detection. SEDREAMS was compared to four of the most effective
methods on a total amount of data of approximately four hours. In the experiments on clean
speech, SEDREAMS provided the best results, reaching on all databases an identification rate
greater than 98% while more than 80% of GCIs were located with an accuracy of 0.25 ms. In
a second experiment, robustness to additive noise, as well as to reverberation, was investigated.
SEDREAMS was shown to have the highest robustness, with an almost unchanged reliability.
Another advantage of SEDREAMS is that it allows a very fast implementation.

• Source-tract separation

The Complex Cepstrum-based Decomposition (CCD) has been proposed in Chapter 5 as a non-
parametric approach for source-filter deconvolution. CCD allows the glottal flow estimation
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directly from the speech waveform, as an alternative to the Zeros of the Z-Transform (ZZT)
algorithm. Both techniques were shown to be functionally equivalent to each other, while the
complex cepstrum is advantageous for its much higher speed, making it suitable for real-time
applications. Windowing effects were studied in a systematic way on synthetic signals. It was
emphasized that windowing plays a crucial role. More particularly we derived a set of constraints
the window should respect so that the windowed signal matches the mixed-phase model. The
potential of CCD was then confirmed by analyzing a large corpus of real speech containing
various voice qualities. Interestingly some significant differences between the voice qualities were
observed in the excitation.

• Comparative evaluation of glottal flow estimation methods

Chapter 6 objectively compared the effectiveness of the main state-of-the-art techniques for
glottal flow estimation: CCD, the Closed Phase Inverse Filtering (CPIF), and the Iterative
Adaptive Inverse Filtering (IAIF) methods. Thorough tests were performed on both synthetic
and real speech. Our first conclusion was that the usefulness of the NAQ, H1-H2 and HRF
features is confirmed for parameterizing the glottal flow. We also confirmed other works in the
literature showing that these parameters can be effectively used as measures for discriminating
different voice qualities. Our results showed that the effectiveness of CPIF and CCD appears
to be similar and rather high, with a slight preference towards CCD. However, it should be
emphasized here that in our real speech tests, clean signals were used; for applications requiring
the analysis of noisy signals (such as telephone applications) further testing is needed. The
impact of factors such as the fundamental or formant frequencies on the estimation performance
was also studied.

• Asynchronous glottal flow estimation

The Chirp Mixed-Phase Decomposition has been proposed in Chapter 7 for the asynchronous
estimation of the glottal flow. This was made possible by an extension of the framework used
by both the ZZT and CCD methods. We also suggested an automatic way to carry out this
decomposition on real speech. The resulting method was shown to be much more robust to GCI
location errors than its traditional (non chirp) equivalent. Interestingly a reliable estimation of
the glottal flow was obtained in an asynchronous way on real connected speech. Thanks to its
low computational load, the chirp CCD method is then suited for being incorporated within a
real-time asynchronous speech processing application.

• Voice pathology detection

A set of new glottal and phase-based features has been proposed in Chapter 8 for the automatic
detection of voice pathologies. The resulting extracted features were assessed through mutual
information-based measures. This allowed their interpretation in terms of discrimination power
and redundancy. It was shown that speech and glottal-based features are relatively complemen-
tary, while they present some synergy with prosodical characteristics. It was also shown that
representations based on group delay functions are particularly suited for capturing irregulari-
ties in the speech signal. The adequacy of the mixed-phase model during voice production was
discussed and shown to convey relevant information. Integrated within a classifier, the proposed
features also led to an interesting improvement in terms of detection rate.

• Glottal-based analysis of expressive voices

Chapter 9 confirmed and quantified, on large corpora, how the glottal source is modified dur-
ing the production of expressive speech. First, we focused on the glottal analysis of Lombard
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speech. Through an analysis on a database containing 25 speakers uttering in quiet and noisy
environments, it was shown that the glottal source is considerably modified in Lombard speech.
These variations, studied for several noise levels and types, have to be taken into account in
applications such as speech or speaker recognition systems. In a second experiment, speech with
various degrees of articulation has been considered. The acoustic analysis investigated changes
related to the vocal tract as well as the glottis. It was shown that hyperarticulated speech is
characterized by a larger vocalic space (more efforts to produce speech, with maximum clarity),
higher fundamental frequency, a glottal flow containing a greater amount of high frequencies
and a higher glottal formant frequency. These conclusions are of interest for being applied in
applications such as expressive/emotional speech recognition/labeling or synthesis.

• Parametric speech synthesis

The Deterministic plus Stochastic Model (DSM) of the residual signal has been proposed in
Chapter 11 for modeling the source excitation. DSM has been integrated into a vocoder in
Chapter 12 for improving the quality delivered by parametric speech synthesizers. The resulting
method was then evaluated within two applicative contexts: pitch modification and HMM-based
speech synthesis. Regarding the pitch modifications capabilities, DSM was compared to 3 other
well-known state-of-the-art techniques for this purpose: TDPSOLA, HNM and STRAIGHT.
A subjective test showed that DSM clearly outperforms TDPSOLA for female speakers and
HNM on male voices. DSM was also observed to be slightly better than STRAIGHT on male
speakers, while STRAIGHT obtained higher results on female voices. In a second application,
the DSM vocoder was integrated into a HMM-based speech synthesizer. The quality delivered by
the resulting synthesizer was compared to the traditional pulse excitation and the STRAIGHT
method. Two subjective comparative evaluations involving a large number of participants, among
which speech experts and naive listeners, were performed. In all cases, results showed a significant
preference for DSM over the pulse excitation, this advantage being clearer for speech experts. As
for the comparison with STRAIGHT, both techniques turned out to lead to similar quality for
both male and female voices. However, one advantage of DSM over STRAIGHT is that it makes
the training step lighter and more importantly alleviates the computational footprint at running
time.

• Speaker recognition

A new approach for speaker recognition has been proposed in Chpater 13. This technique is based
on glottal signatures derived from the proposed DSM of the residual signal. The usefulness of
these signatures was studied on the large TIMIT database, and the recognition results they
carried out were observed to outperform by large the use of other glottal-based features proposed
in the literature. An identification error of only 3.65% was obtained with the 630 speakers of the
TIMIT corpus using the two proposed glottal signatures. In a second test on the YOHO database,
we evaluated the inter-session sensitivity of these signatures, highlighting the degradation due to
a mismatch between recording conditions, and the intra-speaker variability.

14.2 Perspectives

We have presented several new speech analysis tools. Each of the proposed approaches has been
evaluated and compared on a large amount of data with various state-of-the-art techniques for the
same purpose. We can therefore consider that the efficiency of these methods has been confirmed
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through a comprehensive assessment, that no further validation is necessary, and that only minor
improvements could possibly be brought to them.

These tools have been incorporated within several speech processing applications, as it was illus-
trated in Figure 1.5. However, the scope of such methods is not strictly limited to speech processing,
and could be of interest in various other fields of signal processing. The possible further investigations
ensuing from the work presented in this thesis can be summarized as follows:

• Voice Disorder Detection

New features have been proposed in Chapter 8 for automatic voice pathology detection, where
their usefulness was emphasized through a preliminary study. Further work might include their
assessment on connected speech (without limiting the data to sustained vowels), and their use
for the recognition, quantification and qualification of various voice disorders.

• Expressive Voice Analysis

Chapter 9 focused on the glottal analysis of expressive speech. Lombard and hyper/hypo artic-
ulated speech have been studied. A comparable analysis could obviously be extended to other
types of expressive voice, e.g speech presenting affects such as anger, boredom, disgust, anxiety,
happiness or sadness. Such a framework could be also integrated into a system for emotion
recognition, useful for example for enhanced human-computer interactions, or for automatically
detecting events in public places in a surveillance application.

• Speech Synthesis

A new excitation model called DSM has been shown in Chapter 11 to significantly enhance the
quality delivered by parametric speech synthesizers. Its efficiency was confirmed through several
subjective experiments. As perspectives, let us mention the possible improvements of DSM in
voice conversion or modification. Indeed, this requires to process not only characteristics related
to the vocal tract response, but also features derived from the source signal. This is also true for
generating expressive speech, for which one could rely on the conclusions drawn in Chapter 9. An
important advantage of DSM is that it only requires a very small amount of data (a few seconds
of speech), which is particularly convenient for such applications. At last, it would be worth
developing a speech synthesizer exploiting the Complex Cesptrum Decomposition proposed in
Chapter 5, since this could allow the distinct characterization of the glottal flow and the vocal
tract configuration, as physiologically motivated.

• Speaker Recognition

A preliminary evaluation of a speaker identification system using glottal signatures derived from
DSM has been given in Chapter 13. However, several improvements could be brought to the
current approach. Indeed results were obtained using only the proposed glottal waveforms.
Regarding the evidence of a complementarity between excitation-based and vocal tract-based
features, it is reasonable to expect that combining the proposed signatures with a conventional
speaker recognition system would lead to an appreciable improvement. Secondly, applying some
channel compensation could alleviate the mismatch between training and testing conditions,
consequently enhancing the system inter-session robustness.

• Speech Recognition

As illustrated in Figure 1.5, the applicability of glottal analysis methods to speech recognition has
not been addressed in this thesis. According to the author’s point of view, this is probably the
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field of speech processing for which such methods have the less promising contribution. Indeed,
it was shown in Chapter 11 that the vocal tract can be assumed to be sollicited by a comparable
excitation for all voiced phonetic classes. Besides the recognition of the pronounced message is
independent of the produced voice quality. Glottal features would consequently be not suited for
discriminating between different voiced phonemes. The only useful glottal information for speech
recognition would therefore be the presence of voicing in the signal.

• Speech Enhancement

Speech enhancement refers to the cleaning process which aims at reducing the presence of noise
in a corrupted signal, or the task of enhancing its intelligibility. As seen in Figure 1.5, this issue
is not explicitly tackled within the frame of this thesis. Nevertheless, methods of pitch tracking
and GCI detection have been shown in Chapters 2 and 3 to maintain high performance even
under adverse conditions. Thanks to their robustness, these approaches could therefore be of
interest for speech enhancement. Also, if it can be assumed that one can reliably estimate the
DSM components on degraded speech, using the DSM at synthesis time could strongly reduce
the phase perturbations induced by the noise.

• Music, Audio and Biomedical Signal Processing

Techniques described in this thesis have been designed for the speech signal, most of the time
relying on some phonation properties. Nonetheless, these tools are extrapolable to other unidi-
mensional signals, such as music, audio or biomedical signals. In this way, a slightly modified
version of the proposed methods for pitch tracking and GCI detection could be advantageous
for applications where an accurate and reliable synchronization of periodic signals is necessary.
In addition, the SEDREAMS algorithm detailed in Chapter 3 could be beneficial for locating
particular events in the considered signal. As an illustration, this could allow the detection of
abnormalities in audio recordings (typically for surveillance purpose) or in biomedical signals
(typically for patient monitoring). Besides, since the proposed methods are known to be robust,
they are suited for biomedical applications where the use of some sensors inexorably leads to the
inherent capture of parasitical signals.

Finally, for some instruments or for singing voice, mechanisms of production are comparable
to those involved during speech generation. Such mechanisms can be modeled by a source-
filter approach. It would be therefore interesting to investigate the potential of using algorithms
suggested in this thesis for the analysis, and even the synthesis of such music signals.
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Appendix A

Calculation of the radius modifying a

Blackman window for a chirp analysis

In Section 7.2.1, it is argued that for a Blackman window, the radius R necessary to modify its shape
so that its new maximum lies in position t∗ (< L) is expressed as:

R = exp[
2π

L
·

41 tan2(πt
∗

L
) + 9

25 tan3(πt
∗

L
) + 9 tan(πt

∗

L
))
]. (A.1)

This latter expression can be demonstrated as follows. Let us consider a Blackman window w(t) of
length L starting in t = 0:

w(t) = 0.42− 0.5 · cos(
2πt

L
) + 0.08 · cos(

4πt

L
). (A.2)

It is also known from Equation 7.3 that the evaluation of the chirp z-transform of a signal x(t) on
a circle of radius R is equivalent to evaluating the z-transform of x(t) · exp(log(1/R) · t) on the unit
circle. The new window w2(t) modified for a chirp analysis of radius R can then be written as:

w2(t) = w(t) · exp(log(1/R) · t). (A.3)

For a radius R, its maximum is in position t∗ such that w′
2(t

∗) = 0, where w′
2(t) can be expressed

as:

w′
2(t) = w′(t) · exp(log(1/R) · t) + w(t) · log(1/R) · exp(log(1/R) · t) (A.4)

= exp(log(1/R) · t) · [w′(t) + w(t) · log(1/R)] (A.5)

In t∗, we have w′
2(t

∗) = 0 and consequently:

w′(t∗) + w(t∗) · log(1/R) = 0, (A.6)

R = exp(
w′(t∗)

w(t∗)
). (A.7)

Denoting α = πt
L

, the first derivative of the Backman window function can be written as:
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w′(t) = 0.5 ·
2π

L
sin(2α)− 0.08 ·

4π

L
sin(4α) (A.8)

=
π

L
[sin(2α)− 0.32 · sin(4α)] (A.9)

=
π

L
[sin(2α)− 0.64 · sin(2α) · cos(2α)] (A.10)

=
π

L
· sin(2α) · [1− 0.64 · cos(2α)] (A.11)

which, denoting θ = tan(α), becomes:
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π

L
·

2θ

1 + θ2
· [1− 0.64 ·

1− θ2

1 + θ2
] (A.12)

=
π

L
·

2θ

1 + θ2
·
1 + θ2 − 0.64 · (1− θ2)

1 + θ2
(A.13)

=
π

L
·

2θ

1 + θ2
·
0.36 + 1.64 · θ2

1 + θ2
(A.14)

=
π

L
·
0.72 · θ + 3.28 · θ3

(1 + θ2)2
(A.15)

With the same notation, the Blackman window function w(t) can now be expressed as:

w(t) = 0.42− 0.5 · cos 2α+ 0.08 · cos(4α) (A.16)

= 0.42− 0.5 · cos 2α+ 0.08 · [1− 2 · sin2(2α)] (A.17)

= 0.5− 0.5 · cos 2α− 0.16 · sin2(2α) (A.18)

= 0.5− 0.5 ·
1− θ2

1 + θ2
− 0.16 ·

4 · θ2

(1 + θ2)2
(A.19)

=
0.5 · (1 + θ2)2 − 0.5 · (1− θ2) · (1 + θ2)− 0.64 · θ2

(1 + θ2)2
(A.20)

=
0.5 · (1 + 2 · θ2 + θ4)− 0.5 · (1− θ4)− 0.64 · θ2

(1 + θ2)2
(A.21)

=
0.36 · θ2 + θ4

(1 + θ2)2
(A.22)

(A.23)

and the ratio w′(t)
w(t) can be written as:
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=
π

L
·

18
25 + 82

25 · θ2

9
25 · θ + 25

25 · θ3
(A.25)

=
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=
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L
·
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(A.28)

Injecting this expression in Equation A.7, and taking into account the notation for θ and α, the
radius R necessary to modify the shape of a Blackman window so that its new maximum lies in position
t∗ is:

R = exp[
2π

L
·

41 tan2(πt
∗

L
) + 9

25 tan3(πt
∗

L
) + 9 tan(πt

∗

L
))
] (A.29)
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